Part Number Hot Search : 
C30BDL 15015 10502 50015 50015 10502 NTE284 B3790
Product Description
Full Text Search
 

To Download M1AGLE3000V5-FFGG896PP Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  october 2008 i ? 2008 actel corporation iglooe low-power flash fpgas with flash*freeze technology features and benefits low power ? 1.2 v to 1.5 v core voltage support for low power ? supports single-voltage system operation ? low-power active fpga operation ? flash*freeze technology enables ultra-low power consumption while maintaining fpga content ? flash*freeze pin allows easy en try to / exit from ultra-low- power flash*freeze mode high capacity ? 600 k to 3 million system gates ? 108 to 504 kbits of true dual-port sram ? up to 620 user i/os reprogrammable flash technology ? 130-nm, 7-layer metal (6 copper), flash-based cmos process ? live-at-power-up (l apu) level 0 support ? single-chip solution ? retains programmed design when powered off in-system programming (isp) and security ? secure isp using on-chip 128-bit advanced encryption standard (aes) decryption via jtag (ieee 1532?compliant) ?flashlock ? to secure fpga contents high-performance routing hierarchy ? segmented, hierarchical routing and clock structure ? high-performance, low-skew global network ? architecture supports ultra-high utilization pro (professional) i/o ? 700 mbps ddr, lvds-capable i/os ?1.2 v, 1.5 v, 1.8 v, 2.5 v, and 3.3 v mixed-voltage operation ? bank-selectable i/o voltages?up to 8 banks per chip ? single-ended i/o standards: lvttl, lvcmos 3.3 v / 2.5 v / 1.8 v / 1.5 v / 1.2 v, 3.3 v pci / 3.3 v pci-x, and lvcmos 2.5 v / 5.0 v input ? differential i/o standards: lvpecl, lvds, b-lvds, and m-lvds ? voltage-referenced i/o standards: gtl+ 2.5 v / 3.3 v, gtl 2.5 v / 3.3 v, hstl class i and ii, sstl2 class i and ii, sstl3 class i and ii ? i/o registers on input, output, and enable paths ? programmable output slew rate and drive strength ? programmable input delay ? schmitt trigger option on single-ended inputs ? weak pull-up/-down ? ieee 1149.1 (jtag) boundary scan test ? pin-compatible packages across the igloo ? e family clock conditioning circuit (ccc) and pll ? six ccc blocks, each with an integrated pll ? configurable phase shift, multiply/divide, delay capabilities, and external feedback ? wide input frequency range (1.5 mhz up to 250 mhz) embedded memory ? 1 kbit of flashrom user nonvolatile memory ? srams and fifos with variable-aspect-ratio 4,608-bit ram blocks (1, 2, 4, 9, and 18 organizations available) ? true dual-port sram (except 18) arm processor support in iglooe fpgas ? m1 iglooe devices?cortex?-m 1 soft processor available with or without debug ? iglooe product family iglooe devices agle600 agle3000 arm-enabled iglooe devices m1agle3000 system gates 600 k 3 m versatiles (d-flip-flops) 13,824 75,264 quiescent current (typical) in flash*freeze mode (w) 49 137 ram kbits (1,024 bits) 108 504 4,608-bit blocks 24 112 flashrom bits 1 k 1 k secure (aes) isp yes yes cccs with integrated plls 66 versanet globals 1 18 18 i/o banks 88 maximum user i/os 270 620 package pins fbga fg256, fg484 fg484, fg896 notes: 1. refer to the cortex-m1 handbook for more information. 2. six chip (main) and twelve quadrant global networks are available. 3. for devices supporting lowe r densities, refer to the igloo low-power flash fpgas wi th flash*freeze technology handbook. v1.2
ii v1.2 i/os per package 1 iglooe devices agle600 agle3000 arm-enabled iglooe devices m1agle3000 package i/o types single-ended i/o 1 differential i/o pairs single-ended i/o 1 differential i/o pairs fg256 165 79 ? ? fg484 270 135 341 168 fg896 ? ? 620 310 notes: 1. when considering migrating your design to a lower- or higher-density device, refer to the iglooe low-power flash fpgas with flash* freeze technology handbook to ensure compli ance with design and bo ard migration requirements. 2. each used differential i/o pair reduces the nu mber of single-ended i/os available by two. 3. for agle3000 devices, the usage of certa in i/o standards is limited as follows: ? sstl3(i) and (ii): up to 40 i/os per north or south bank ? lvpecl / gtl+ 3.3 v / gtl 3.3 v: up to 48 i/os per north or south bank ? sstl2(i) and (ii) / gtl+ 2.5 v/ gtl 2.5 v: up to 72 i/os per north or south bank 4. fg256 and fg484 are footprint-compatible packages. 5. when using voltage-referenced i/o standards, one i/o pin should be assigned as a voltage-referenced pin (v ref ) per minibank (group of i/os). when the flash*freeze pin is used to directly enable flash*freeze mode and not as a regular i/o, the number of single-ended user i/os available is reduced by one. 6. when the flash*freeze pin is used to di rectly enable flash*freeze mode and not as a regular i/o, the number of single- ended user i/os available is reduced by one. 7. "g" indicates rohs-compl iant packages. refer to "iglooe ordering information" on page iii for the loca tion of the "g" in the part number. iglooe fpgas package sizes dimensions package fg256 fg484 fg896 length width (mm mm) 17 17 23 23 31 31 nominal area (mm 2 ) 289 529 961 pitch (mm) 111 height (mm) 1.6 2.23 2.23
iglooe low-power flash fpgas v1.2 iii iglooe ordering information notes: 1. marking information: igloo v2 device s do not have v2 marking, but iglo o v5 devices are marked accordingly. 2. the dc and switching characte ristics for the ?f speed grade targets are ba sed only on simulation . the characteristics provided for the ?f speed grad e are subject to change after establishing fpga specifications. some restrictions might be added and will be reflected in future revisions of this docu ment. the ?f speed grade is on ly supported in the commercial temperature range. v2 agle3000 fg _ part number speed grade blank = standard f = 20% slower than standard* package type fg = fine pitch ball grid array (1.0 mm pitch) 896 i package lead count application (temperature range) blank = commercial (0c to +70c ambient temperature) i = industrial (?40c to +85c ambient temperature) pp = pre-production es = engineering sample (room temperature only) 600,000 system gates agle600 = 3,000,000 system gates agle3000 = g lead-free packaging blank = standard packaging g = rohs-compliant packaging iglooe devices 3,000,000 system gates supply voltage 2 = 1.2 v to 1.5 v 5 = 1.5 v only iglooe devices with cortex-m1 m1agle3000 =
iv v1.2 temperature grade offerings speed grade and temperature grade matrix references made to iglooe de vices also apply to ar m-enabled iglooe devices. the ar m-enabled part numbers start with m1 (cortex-m1). contact your local actel represen tative for device availability: http://www.actel.com/contact/default.aspx . package agle600 agle3000 m1aglpe3000 fg256 c, i ? fg484 c, i c, i fg896 ?c, i note: c = commercial temperature range: 0c to 70c ambient temperature. i = industrial temperature range: ?4 0c to 85c ambient temperature. temperature grade ?f 1 std. c 2 ?? i 3 ? ? notes: 1. the characteristics prov ided for the ?f speed grade are subject to change a fter establishing fpga specifications. some restrictions might be added and will be reflected in future revisions of th is document. the ?f speed grade is only supported in the commerc ial temperature range. 2. c = commercial temperature range: 0c to 70c ambient temperature. 3. i = industrial temperature range: ?40c to 85c ambient temperature.
v1.2 1-1 1 ? iglooe device family overview general description the iglooe family of flash fpgas, based on a 130- nm flash process, offers the lowest power fpga, a single-chip solution , small footprint packages, reprogr ammability, and an abundance of advanced features. the flash*freeze technology used in iglooe devices enables ente ring and exiting an ultra-low- power mode while retaining sram and register da ta. flash*freeze techno logy simplifies power management through i/o and clock management with rapid recovery to operation mode. the low power active capability (static idle) al lows for ultra-low-power consumption while the iglooe device is completely func tional in the system. this allows the iglooe device to control system power management based on external inpu ts (e.g., scanning for keyboard stimulus) while consuming minimal power. nonvolatile flash technology gives iglooe devices the advantage of being a secure, low power, single-chip solution that is live at power-up (l apu). iglooe is reprogrammable and offers time-to- market benefits at an asic-level unit cost. these features enable designers to create high-den sity systems using existi ng asic or fpga design flows and tools. iglooe devices offer 1 kbit of on-chip, programmable, nonvolatile flashrom storage as well as clock conditioning circuitry based on 6 integrated phase-locked loops (plls ). iglooe devices have up to 3 million system gates, supported with up to 504 kbits of tru e dual-port sram and up to 620 user i/os. m1 iglooe devices supp ort the high-performance, 32-bit cortex-m1 processor developed by arm for implementation in fpgas. cort ex-m1 is a soft processor that is fully implemented in the fpga fabric. it has a three-stage pipeline that offers a good balance between low-power consumption and speed when implemented in an m1 iglooe device. the processor runs the armv6-m instruction set, has a configurab le nested interrupt controller, and can be implemented with or without the debug block. cortex-m1 is available for free from actel for use in m1 iglooe fpgas. the arm-enabled devices have actel ordering numbers that begin with m1agle and do not support aes decryption. flash*freeze technology the iglooe device offers unique flash*freeze te chnology, allowing the device to enter and exit ultra-low-power flash*freeze mode . iglooe devices do not need additional components to turn off i/os or clocks while retaining the design info rmation, sram content, and registers. flash*freeze technology is combined with in -system programmability, which enab les users to quickly and easily upgrade and update their designs in the final stages of manufacturing or in the field. the ability of iglooe v2 devices to support a wide range of core voltage (1.2 v to 1.5 v) allows further reduction in power consumption, thus achiev ing the lowest total system power. when the iglooe device enters flash*freeze mode , the device automatica lly shuts off the clocks and inputs to the fpga co re; when the device exits flash*free ze mode, all acti vity resumes and data is retained. the availability of low-power mo des, combined with reprogrammabi lity, a single-chip and single- voltage solution, and availability of small-footprint, high pin-count packages, make iglooe devices the best fit fo r portable electronics.
iglooe device family overview 1-2 v1.2 flash advantages low power flash-based iglooe devices exhibit power characteri stics similar to those of an asic, making them an ideal choice for power-sensitiv e applications. iglooe devices have only a very limited power-on current surge and no hi gh-current transition period, both of which occur on many fpgas. iglooe devices also have low dynamic power co nsumption to further maximize power savings; power is even further reduced by the use of a 1.2 v core voltage. low dynamic power consumption, combined with low static power consum ption and flash*freeze technology, gives the iglooe device the lo west total system power offered by any fpga. security the nonvolatile, flash-based iglooe devices do no t require a boot prom, so there is no vulnerable external bitstream that can be ea sily copied. iglooe de vices incorporate flashlock, which provides a unique combination of reprogrammability and design security without external overhead, advantages that only an fpga with no nvolatile flash programming can offer. iglooe devices utilize a 128-bit flash-based lock and a separate aes key to secure programmed intellectual property and configuration data. in addition, all flashrom data in iglooe devices can be encrypted prior to loading, using the industry-leading aes-128 (fips192) bit block cipher encryption standard. aes was ad opted by the national institute of standards and technology (nist) in 2000 and replaces the 1977 des standard. iglooe devices have a built-in aes decryption engine and a flash-based aes key that make them the most comprehensive programmable logic device security solution availabl e today. iglooe devices with aes- based security allow for secure, remote field updates over public networks such as the internet, and ensure that valuable ip remains out of the hands of system overbuilders, sy stem cloners, and ip thieves. the contents of a programmed iglooe device cannot be read back, although secure design verification is possible. security, built into the fpga fabric , is an inherent component of the iglooe family. the flash cells are located beneath seven metal layers, and many device design and layout techniques have been used to make invasive attacks extremely diffic ult. the iglooe family, with flashlock and aes security, is unique in being highly resistant to both in vasive and noninvasive attacks. your valuable ip is protected and secure, making remote isp possible. an iglooe device provides the most impenetrable security for programmable logic designs. single chip flash-based fpgas store their configuration information in on-chip flash cells. once programmed, the configuration data is an inherent part of the fpga structure, and no external configuration data needs to be loaded at system power-up (u nlike sram-based fpgas). therefore, flash-based iglooe fpgas do not require system conf iguration components such as eeproms or microcontrollers to load device configuration da ta. this reduces bill-of-materials costs and pcb area, and increases securi ty and system reliability. live at power-up the actel flash-based iglooe de vices support level 0 of the la pu classification standard. this feature helps in system component initialization, executio n of critical tasks before the processor wakes up, setup and configuration of memory blocks, clock genera tion, and bus activity management. the lapu feature of flash-based iglooe devices greatly simplifies total system design and reduces tota l system cost, often eliminating the need for cplds and clock generation plls. in addition, glitches and brownouts in system power will not corrupt the iglooe device's flash configuration, and unlike sr am-based fpgas, the device will not have to be reloaded when system power is restored. this enables the reduction or complete removal of the configuration prom, expensive voltage monitor, brownout detection, and clock generator de vices from the pcb design. flash-based iglooe device s simplify total system design an d reduce cost and design risk while increasing system reliability and improving system initialization time.
iglooe low-power flash fpgas v1.2 1-3 reduced cost of ownership advantages to the designer extend beyond lo w unit cost, performance, and ease of use. unlike sram-based fpgas, flash-based iglo oe devices allow all functionality to be live at power-up; no external boot prom is required. on-board security mechanisms prev ent access to all the programming information an d enable secure remote updates of the fpga logic. designers can perform secure remote in-system reprogramming to supp ort future design iterations and field upgrades with confidence that valuable intellec tual property cannot be compromised or copied. secure isp can be performed using the industry-standard aes algori thm. the iglooe family device architecture mitigates the need for asic migrati on at higher user volumes. this makes the iglooe family a cost-effective asic repl acement solution, especially for applications in the consumer, networking/communications, comp uting, and avionics markets. firm-error immunity firm errors occur most commonly when high-energ y neutrons, generated in the upper atmosphere, strike a configuration cell of an sram fpga. the energy of the coll ision can change the state of the configuration cell and thus change the logic, routing, or i/o behavior in an unpredictable way. these errors are impossible to prev ent in sram fpgas. the consequenc e of this type of error can be a complete system failure. firm errors do not exis t in the configuration memory of iglooe flash- based fpgas. once it is programmed, the flash cell configuration element of iglooe fpgas cannot be altered by high-energy neutrons and is theref ore immune to them. reco verable (or soft) errors occur in the user data sram of all fpga device s. these can easily be mitigated by using error detection and correction (edac) ci rcuitry built into the fpga fabric. advanced flash technology the iglooe family offers many benefits, including nonvolatility and reprogrammability, through an advanced flash-based, 130-nm lvcmos proces s with seven layers of metal. standard cmos design techniques are used to implement logic and control functions. the combination of fine granularity, enhanced flexible routing resources, and abundant flash switches allows for very high logic utilization without compromi sing device routability or perf ormance. logic functions within the device are interconnected thro ugh a four-level routing hierarchy. iglooe family fpgas utilize design and process techniques to minimize power consumption in all modes of operation. advanced architecture the proprietary iglooe architecture provides gran ularity comparable to st andard-cell asics. the iglooe device consists of five distinct and programmable architectural features ( figure 1-1 on page 4 ): ? flash*freeze technology ? fpga versatiles ? dedicated flashrom ? dedicated sram/fifo memory ? extensive cccs and plls ? pro i/o structure the fpga core consists of a sea of versatiles. ea ch versatile can be configured as a three-input logic function, a d-flip-flop (with or without enable), or a latch by programming the appropriate flash switch interconnections. the versatility of th e iglooe core tile as either a three-input lookup table (lut) equivalent or a d-flip-flop/latch with enable allows for efficien t use of the fpga fabric. the versatile capability is un ique to the actel proasic ? family of third-generation-architecture flash fpgas. versatiles are connected with any of the four levels of routing hierarchy. flash switches are distributed throughout the device to provide nonvolatile, reconfigurable interconnect programming. maximum core utilization is possible for virtually any design.
iglooe device family overview 1-4 v1.2 in addition, extensive on-chip programming circ uitry allows for rapid, single-voltage (3.3 v) programming of iglooe devices vi a an ieee 1532 jtag interface. flash*freeze technology the iglooe device has an ultra-low power static mode, called flash*freeze mode, which retains all sram and register information and can still quickly return to normal operation. flash*freeze technology enables the user to quickly (within 1 s ) enter and exit flash*freeze mode by activating the flash*freeze pin while all powe r supplies are kept at their original values. in addition, i/os and global i/os can still be driven and can be toggli ng without impact on power consumption, clocks can still be driven or can be toggling without impact on power consumption, and the device retains all core registers, sram information, and states. i/o states are tristated during flash*freeze mode or can be set to a certain state using weak pull-up or pull-down i/o attribute configuration. no power is consumed by the i/o banks, cl ocks, jtag pins, or pll in this mode. flash*freeze technology allows the user to switch to active mode on dema nd, thus simplifying the power management of the device. the flash*freeze pin (active low) can be routed inte rnally to the core to allow the user's logic to decide when it is safe to transition to this mode . it is also possible to us e the flash*freeze pin as a regular i/o if flash*free ze mode usage is not planned, whic h is advantageous because of the figure 1-1 ? iglooe device architecture overview 4,608-bit dual-port sram or fifo block versatile ram block ccc pro i/os 4,608-bit dual-port sram or fifo block ram block isp aes decryption* user nonvolatile flashrom flash*freeze technology charge pumps
iglooe low-power flash fpgas v1.2 1-5 inherent low power static and dynamic capa bilities of the iglooe device. refer to figure 1-2 for an illustration of entering/exiting flash*freeze mode. versatiles the iglooe core consists of versatiles, wh ich have been enhanced beyond the proasic plus ? core tiles. the iglooe versat ile supports the following: ? all 3-input logic functions?lut-3 equivalent ? latch with clear or set ? d-flip-flop with clear or set ? enable d-flip-flop with clear or set refer to figure 1-3 for versatile configurations. user nonvolatile flashrom actel iglooe devices have 1 kbit of on-chip, us er-accessible, nonvolatile flashrom. the flashrom can be used in diverse system applications: ? internet protocol addressing (wireless or fixed) ? system calibration settings ? device serialization and/or inventory control ? subscription-based business mode ls (for example, set-top boxes) ? secure key storage for secu re communicati ons algorithms ? asset management/tracking ? date stamping ? version management the flashrom is written using the standard iglooe ieee 1532 jtag programming interface. the core can be individually programmed (erased and written), and on-chip aes decryption can be used selectively to securely load data over public networ ks, as in security keys stored in the flashrom for a user design. figure 1-2 ? iglooe flash*freeze mode a c tel i g looe fp g a flash * freeze mo d e c ontrol flash * freeze pin figure 1-3 ? versatile configurations x1 y x2 x3 lut-3 data y clk enable clr d-ff data y clk clr d-ff lut-3 equivalent d-flip-flop with clear or set enable d-flip-flop with clear or set
iglooe device family overview 1-6 v1.2 the flashrom can be programmed via the jtag pr ogramming interf ace, and its contents can be read back either throug h the jtag programming interface or vi a direct fpga core addressing. note that the flashrom can only be programmed fro m the jtag interface and cannot be programmed from the internal logic array. the flashrom is programmed as 8 banks of 128 bi ts; however, reading is performed on a byte-by- byte basis using a synchronous interface. a 7-bit address from the fpga core defines which of the 8 banks and which of the 16 bytes within that ba nk are being read. the th ree most sign ificant bits (msbs) of the flashrom address determine the bank , and the four least sign ificant bits (lsbs) of the flashrom address define the byte. the actel iglooe development software solutions, libero ? integrated design environment (ide) and designer, have extensive su pport for the flashrom. one such feature is auto-generation of sequential programming fi les for applications requiring a un ique serial number in each part. another feature allows the inclusion of static data for system version control. data for the flashrom can be generated quickl y and easily using actel libero ide and designer software tools. comprehensive programming file su pport is also included to allo w for easy programming of large numbers of parts with di ffering flashrom contents. sram and fifo iglooe devices have embedded sram blocks along their north and south sides. each variable- aspect-ratio sram block is 4,608 bits in size. available memory configurations are 25618, 5129, 1k4, 2k2, and 4k1 bits. the indi vidual blocks have independent read and write ports that can be configured with different bit widths on each port . for example, data can be sent through a 4-bit port and read as a single bitstre am. the embedded sram blocks ca n be initialized via the device jtag port (rom emulation mode) using the ujtag macro. in addition, every sram block has an embedded fifo control unit. the control unit allows the sram block to be configured as a synchronous fi fo without using additional core versatiles. the fifo width and depth are programmable. the fifo also features programmable almost empty (aempty) and almost full (afull) flags in additi on to the normal empt y and full flags. the embedded fifo control unit cont ains the counters necessary for ge neration of the read and write address pointers. the embedded sram /fifo blocks can be cascaded to create larger configurations. pll and ccc iglooe devices provide designers with very flexible clock conditioning capabilities. each member of the iglooe family contains six c ccs, each with an integrated pll. the six ccc blocks are located at the four corners and th e centers of the east and west sides. one ccc (center west side) has a pll. the inputs of the six ccc blocks are accessible from the fpga core or fro m one of several inputs located near the ccc that have dedicated connections to the ccc block. the ccc block has these key features: ? wide input frequency range (f in_ccc ) = 1.5 mhz up to 250 mhz ? output frequency range (f out_ccc ) = 0.75 mhz up to 250 mhz ? 2 programmable delay types for clock skew minimization ? clock frequency synthesis additional ccc specifications: ? internal phase shift = 0, 90, 180, and 270 . output phase shift depends on the output divider configuration. ? output duty cycle = 50% 1.5% or better ? low output jitter: worst case < 2.5% cloc k period peak-to-peak peri od jitter when single global network used ? maximum acquisition time is 300 s ? exceptional tolerance to input period jitter ?allowable input jitter is up to 1.5 ns ? four precise phases; maximum misalignment be tween adjacent phases of 40 ps 250 mhz / f out_ccc
iglooe low-power flash fpgas v1.2 1-7 global clocking iglooe devices have exte nsive support for multiple clocking do mains. in addition to the ccc and pll support described above, there is a comp rehensive global cloc k distribution network. each versatile input and output port has access to nine versanets: six chip (main) and three quadrant global networks. the ve rsanets can be driven by the ccc or directly accessed from the core via multiplexers (muxes). the versanets can be used to distribute low-s kew clock signals or for rapid distribution of high-fanout nets. pro i/os with a dvanced i/o standards the iglooe family of fpgas features a flexible i/ o structure, supporting a range of voltages (1.2 v, 1.5 v, 1.8 v, 2.5 v, and 3.3 v). igl ooe fpgas support 19 different i/o standards, including single- ended, differential, and voltage-referenced. the i/os are organized into banks, with eight banks per device (two per side). the configuratio n of these banks determines the i/o standards supported. each i/o bank is subdivided into v ref minibanks, which are us ed by voltage-referenced i/os. v ref minibanks contain 8 to 18 i/os. all the i/os in a given minibank share a common v ref line. therefore, if any i/o in a given v ref minibank is configured as a v ref pin, the remaining i/os in that minibank will be able to use that reference voltage. each i/o module contains several input, output , and enable registers. these registers allow the implementation of the following: ? single-data-rate applications (e.g., pci 66 mhz, bidirectional sstl 2 and 3, class i and ii) double-data-rate applications (e.g., ddr lvds , b-lvds, and m-lvds i/os for point-to-point communications, and ddr 200 mhz sram using bidirectional hstl class ii). iglooe banks support m-lvds with 20 multi-drop points.
iglooe device family overview 1-8 v1.2 part number and revision date part number 51700096-001-3 revised october 2008 list of changes the following table lists critical changes that we re made in the current version of the document. previous version changes in current version (v1.2) page v1.1 (june 2008) the quiescent current values in the "iglooe product family" table were updated. i v1.0 (april 2008) as a result of the libero ide v8.4 re lease, actel now offers a wide range of core voltage support. th e document was updated to change 1.2 v / 1.5 v to 1.2 v to 1.5 v. n/a 51700096-001-1 (march 2008) this document was divided into two sections and given a version number, starting at v1.0. the first section of th e document includes features, benefits, ordering information, and temperature and speed grade offerings. the second section is a de vice family overview. n/a 51700096-001-0 (january 2008) the "low power" section was updated to change "1.2 v and 1.5 v core voltage" to "1.2 v and 1.5 v core and i/o voltage." the text "(from 25 w)" was removed from " low-power active fpga operation." 1.2_v was added to the list of core and i/o voltages in the "pro (professional) i/o" and "pro i/os with advanced i/o standards" sections. i i , 1-7 advance v0.4 (december 2007) this document was previously in da tasheet advance v0.4. as a result of moving to the handbook format, actel has restarted the version numbers. the new version number is 51700096-001-0. n/a advance v0.3 (september 2007) table 1 ? iglooe product family wa s updated to change the maximum number of user i/os for agle3000. i table 2 ? iglooe fpgas package sizes dimensions is new. package dimensions were removed from the "i/os per package1" table. the number of i/os was updated for fg896. ii a note regarding marking informati on was added to "iglooe ordering information". iii advance v0.2 (july 2007) cortex-m1 device information was ad ded to cortex-m1 device information was added to table 1 ? iglooe prod uct family, the "i/os per package1" table, "iglooe ordering informatio n", and temperature grade offerings. i, ii, iii, iv advance v0.1 the words "ambien t temperature" were added to the temperature range in the "iglooe ordering in formation", "temperature grade offerings", and "speed grade and temperatur e grade matrix" sections. iii, iv
iglooe low-power flash fpgas v1.2 1-9 datasheet categories categories in order to provide the latest information to desi gners, some datasheets are published before data has been fully characterized. datasheets are designated as "product brief," "advance," "preliminary," and "production." the definiti on of these categories are as follows: product brief the product brief is a summarized version of a datasheet (advance or production) and contains general product information. this document give s an overview of specific device and family information. advance this version contains initial estimated information based on simulation, ot her products, devices, or speed grades. this information can be used as estimates, but not for production. this label only applies to the dc and switching characteristics chapte r of the datasheet and will only be used when the data has not been fully characterized. preliminary the datasheet contains information based on si mulation and/or initia l characterization. the information is believed to be co rrect, but changes are possible. unmarked (production) this version contains information that is considered to be final. export administration regulations (ear) the products described in this do cument are subject to the expo rt administration regulations (ear). they could require an ap proved export license prior to export from the united states. an export includes release of product or disclosure of technology to a foreign national inside or outside the united states. actel safety critical, life support, and high-reliability applications policy the actel products described in this advance status document may not have completed actel?s qualification process. actel may amend or enhance products during the product introduction and qualification process, resulting in changes in device functional ity or performance. it is the responsibility of each customer to ensure the fitn ess of any actel product (but especially a new product) for a particular purpose, including appr opriateness for safety-cri tical, life-s upport, and other high-reliability applicatio ns. consult actel?s terms and cond itions for specific liability exclusions relating to life-support applications. a reliabilit y report covering all of actel?s products is available on the actel website at http://www.actel.com/documents/ort_report.pdf . actel also offers a variety of enhanced qualification and lot acceptance screening procedures. contact your local actel sales office for addi tional reliability information.

advance v0.3 2-1 2 ? iglooe dc and switching characteristics general specifications dc and switching characteristic s for ?f speed grade targets ar e based only on simulation. the characteristics provided for the ?f speed grad e are subject to change after establishing fpga specifications. some restri ctions might be added and will be re flected in future revisions of this document. the ?f speed grade is only suppo rted in the commercial temperature range. operating conditions stresses beyond those listed in table 2-1 may cause permanent damage to the device. exposure to absolute maximum rati ng conditions for extended period s may affect device reliability. absolute maximum ratings are stress ratings only; fu nctional operation of the device at these or any other conditions beyond those listed unde r the recommended operat ing conditions specified in table 2-2 on page 2-2 is not implied . table 2-1 ? absolute maxi mum ratings symbol parameter limits units v cc dc core supply volt age ?0.3 to 1.65 v v jtag jtag dc voltage ?0.3 to 3.75 v v pump programming voltage ?0.3 to 3.75 v v ccpll analog power supply (pll) ?0.3 to 1.65 v v cci and vmv 3 dc i/o buffer supply voltage ?0.3 to 3.75 v vi i/o input voltage ?0.3 v to 3.6 v (when i/o hot insertion mode is enabled) ?0.3 v to (vcci + 1 v) or 3.6 v, whichever voltage is lower (when i/o hot-insertion mode is disabled) v t stg 2 storage temperature ?65 to +150 c t j 2 junction temperature +125 c notes: 1. the device should be operated with in the limits specified by the datash eet. during transi tions, the input signal may undershoot or overshoot according to the limits shown in table 2-4 on page 2-3 . 2. for flash programming and rete ntion maximum limits, refer to table 2-3 on page 2-2 , and for recommended operatin g limits, refer to table 2-2 on page 2-2 . 3. vmv pins must be connected to the corresponding v cci pins. see pin descriptions for further information.
iglooe dc and switching characteristics 2-2 advance v0.3 table 2-2 ? recommended operating conditions 4 symbol parameter commercial industrial units t a ambient temperature 0 to +70 6 ?40 to +85 7 c t j junction temperature 8 0 to + 85 ?40 to +100 v cc 1.5 v dc core supply voltage 1 1.425 to 1.575 1.425 to 1.575 v 1.2 v?1.5 v wide range core voltage 2 1.14 to 1.575 1.14 to 1.575 v v jtag jtag dc voltage 1.4 to 3.6 1.4 to 3.6 v v pump 5 programming voltage programming mo de 3.15 to 3.45 3.15 to 3.45 v operation 3 0 to 3.45 0 to 3.45 v v ccpll 9 analog power supply (pll) 1.5 v dc core supply voltage 1 1.4 to 1.6 1.4 to 1.6 v 1.2 v?1.5 v wide range core voltage 2 1.14 to 1.575 1.14 to 1.575 v v cci and vmv 10 1.2 v dc supply voltage 2 1.14 to 1.26 1.14 to 1.26 v 1.5 v dc supply voltage 1. 425 to 1.575 1.425 to 1.575 1.8 v dc supply voltage 1.7 to 1.9 1.7 to 1.9 v 2.5 v dc supply voltage 2.3 to 2.7 2.3 to 2.7 v 3.3 v dc supply voltage 3.0 to 3.6 3.0 to 3.6 v lvds differential i/o 2.375 to 2.625 2.375 to 2.625 v lvpecl differential i/o 3. 0 to 3.6 3.0 to 3.6 v notes: 1. for iglooe v5 devices 2. for iglooe v2 devices only, operating at v cci v cc 3. the ranges given here are for power supplies only. th e recommended input voltage ranges specific to each i/o standard are given in table 2-20 on page 2-20 . v cci should be at the same voltage within a given i/o bank. 4. all parameters representing voltages are measured with respect to gnd unless otherwise specified. 5. v pump can be left floating during operation (not programming mode). 6. maximum t j = 85 c. 7. maximum t j = 100 c. 8. to ensure targeted reliab ility standards are met across ambient an d junction operating temperatures, actel recommends that the user follow best design practices using actel?s ti ming and power simulation tools. 9. v ccpll pins should be tied to v cc pins. see pin descriptions for further information. 10. vmv pins must be connected to the corresponding v cci pins. see pin descriptions for further information. table 2-3 ? flash programming limits ? retention, storage, and operating temperature 1 product grade programming cycles program retention (biased/unbiased) maximum storage temperature t stg (c) 2 maximum operat ing junction temperature t j (c) 2 commercial 500 20 years 110 100 industrial 500 20 years 110 100 notes: 1. this is a stress rating only; functional operation at any condition other than t hose indicated is not implied. 2. these limits apply for program/ data retention only. refer to table 2-1 on page 2-1 and table 2-2 for device operating conditions and absolute limits.
iglooe dc and switching characteristics advance v0.3 2-3 i/o power-up and supply voltage thresholds for power-on reset (commercial and industrial) sophisticated power-up management circuitry is designed into ever y iglooe device. these circuits ensure easy transition from the powered-off state to the powered-up state of the device. the many different supplies can power up in any sequence with minimized current spikes or surges. in addition, the i/o will be in a known state through the power-up sequence. the basic principle is shown in figure 2-1 on page 2-4 and figure 2-2 on page 2-5 . there are five regions to consider during power-up. iglooe i/os are activated only if all of the following three conditions are met: 1. v cc and v cci are above the minimum specified trip points ( figure 2-1 on page 2-4 and figure 2-2 on page 2-5 ). 2. v cci > v cc ? 0.75 v (typical) 3. chip is in the operating mode. v cci trip point: ramping up: 0.6 v < tr ip_point_up < 1.2 v ramping down: 0.5 v < trip_point_down < 1.1 v v cc trip point: ramping up: 0.6 v < tr ip_point_up < 1.1 v ramping down: 0.5 v < trip_point_down < 1 v v cc and v cci ramp-up trip points are about 100 mv hi gher than ramp-dow n trip points. this specifically built-in hysteresis pr events undesirable power-up oscillations and current surges. note the following: ? during programming, i/os become tri stated and weakly pulled up to v cci . ? jtag supply, pll power supplies, and charge pump v pump supply have no influence on i/o behavior. table 2-4 ? overshoot and undershoot limits 1 v cci average v cci ?gnd overshoot or undershoot duration as a percentage of clock cycle 2 maximum overshoot/ undershoot 2 2.7 v or less 10% 1.4 v 5% 1.49 v 3 v 10% 1.1 v 5% 1.19 v 3.3 v 10% 0.79 v 5% 0.88 v 3.6 v 10% 0.45 v 5% 0.54 v notes: 1. based on reliability requirements at junction temperature at 85c. 2. the duration is allowed at one out of six clock cycles. if the ove rshoot/undershoot occurs at one out of two cycles, the maximum overshoot/undersho ot has to be reduced by 0.15 v. 3. the device meets overshoot/undershoot spec ification requirements fo r pci inputs with v cci = 3.45 v at 85c maximum, whereas the average toggling of inputs at one-sixth of pci frequency is considered.
iglooe dc and switching characteristics 2-4 advance v0.3 pll behavior at br ownout condition actel recommends using monotonic power suppli es or voltage regulators to ensure proper powerup behavior. power ramp-up shoul d be monotonic at least until v cc and v ccplx exceed brownout activation levels. the v cc activation level is specified as 1.1 v worst-case (see figure 2-1 and figure 2-2 on page 2-5 for more details). when pll power supply voltage and/or v cc levels drop below the v cc brownout levels (0.75 v 0.25 v), the pll output lock sign al goes low and/or the output clock is lost. refer to the power-up/-down behavior of low-power flash devices chapter of the hand book for information on clock and lock recovery. internal power-up activation sequence 1. core 2. input buffers output buffers, after 200 ns dela y from input buffer activation. figure 2-1 ? v5 ? i/o state as a function of v cci and v cc voltage levels region 1: i/o buffers are off region 2: i/o buffers are on. i/os are functional (except differential inputs) but slower because v cci /v cc are below specification. for the same reason, input buffers do not meet v ih /v il levels, and output buffers do not meet v oh /v ol levels. min v cci datasheet specification voltage at a selected i/o standard; i.e., 1.425 v or 1.7 v or 2.3 v or 3.0 v v cc v cc = 1.425 v region 1: i/o buffers are off activation trip point: v a = 0.85 v 0.25 v deactivation trip point: v d = 0.75 v 0.25 v activation trip point: v a = 0.9 v 0.3 v deactivation trip point: v d = 0.8 v 0.3 v v cc = 1.575 v region 5: i/o buffers are on and power supplies are within specification. i/os meet the entire datasheet and timer specifications for speed, v ih /v il , v oh /v ol , etc. region 4: i/o buffers are on. i/os are functional (except differential but slower because v cci is below specification. for the same reason, input buffers do not meet v ih /v il levels, and output buffers do not meet v oh /v ol levels. region 4: i/o buffers are on. i/os are functional (except differential inputs) where vt can be from 0.58 v to 0.9 v (typically 0.75 v) v cci region 3: i/o buffers are on. i/os are functional; i/o dc specifications are met, but i/os are slower because the v cc is below specification. v cc = v cci + vt
iglooe dc and switching characteristics advance v0.3 2-5 thermal characteristics introduction the temperature variable in actel designer software refers to th e junction temper ature, not the ambient temperature. this is an important distinction because dyna mic and static power consumption cause the chip junction to be higher than the ambient temperature. eq 2-1 can be used to calculate junction temperature. t j = junction temperature = t + t a eq 2-1 where: t a = ambient temperature t = temperature gradient between junction (silicon) and ambient t = ja * p ja = junction-to-ambient of the package. ja numbers are located in table 2-5 . p = power dissipation figure 2-2 ? v2 devices ? i/o state as a function of v cci and v cc voltage levels region 1: i/o buffers are off region 2: i/o buffers are on. i/os are functional (except differential inputs) but slower because v cci /v cc are below specification. for the same reason, input buffers do not meet v ih /v il levels, and output buffers do not meet v oh /v ol levels. min v cci datasheet specification voltage at a selected i/o standard; i.e., 1.14 v,1.425 v, 1.7 v, 2.3 v, or 3.0 v v cc v cc = 1.14 v region 1: i/o buffers are off activation trip point: v a = 0.85 v 0.2 v d eactivation trip point: v d = 0.75 v 0.2 v activation trip point: v a = 0.9 v 0.15 v deactivation trip point: v d = 0.8 v 0.15 v v cc = 1.575 v region 5: i/o buffers are on and power supplies are within specification. i/os meet the entire datasheet and timer specifications for speed, v ih /v il , v oh /v ol , etc. region 4: i/o buffers are on. i/os are functional (except differential but slower because v cci is below specification. for the same reason, input buffers do not meet v ih /v il levels, and output buffers do not meet v oh /v ol levels. region 4: i/o buffers are on. i/os are functional (except differential inputs) where vt can be from 0.58 v to 0.9 v (typically 0.75 v) v cci region 3: i/o buffers are on. i/os are functional; i/o dc specifications are met, but i/os are slower because the v cc is below specification. v cc = v cci + vt
iglooe dc and switching characteristics 2-6 advance v0.3 package thermal characteristics the device junction-to-case thermal resistivity is jc and the junction-to-ambient air thermal resistivity is ja . the thermal characteristics for ja are shown for two air flow rates. the absolute maximum junction temperature is 100c. eq 2-2 shows a sample calculation of the absolute maximum power dissipatio n allowed for an 896-pin fbga package at commercial temperature and in still air. eq 2-2 temperature and voltage derating factors maximum power allowed max. junction temp. ( c) max. ambient temp. ( c) ? ja ( c/w) ------------------------------------------------------------------------------------------------------------------------------- -------- 100 c70 c ? 13.6 c/w ------------------------------------ 2 . 2 0 6 w = = = table 2-5 ? package thermal resistivities package type pin count jc ja units still air 200 ft. /min. 500 ft./min. plastic quad flat package (pqfp) 208 8.0 26.1 22.5 20.8 c/w plastic quad flat package (pqfp) with embedded heat spreader 208 3.8 16.2 13.3 11.9 c/w fine pitch ball grid array (fbga) 256 3.8 26.9 22.8 21.5 c/w 484 3.2 20.5 17.0 15.9 c/w 676 3.2 16.4 13.0 12.0 c/w 896 2.4 13.6 10.4 9.4 c/w table 2-6 ? temperature and voltage derating factors for timing delays (normalized to t j = 70c,v cc = 1.425 v) for iglooe v2 or v5 devices, 1.5 v dc core supply voltage array voltage v cc (v) junction temperature (c) ?40c 0c 25c 70c 85c 110c 1.425 0.95 0.96 0.98 1.00 1.01 1.02 1.5 0.880.890.910.930.930.94 1.575 0.82 0.84 0.85 0.87 0.88 0.89 table 2-7 ? temperature and voltage derating factors for timing delays (normalized to t j = 70c, v cc =1.14v) for iglooe v2, 1.2 v dc core supply voltage array voltage v cc (v) junction temperature (c) ?40c 0c 25c 70c 85c 110c 1.14 0.97 0.98 0.99 1.00 1.01 1.01 1.2 0.840.850.860.870.880.88 1.26 0.76 0.77 0.78 0.79 0.79 0.80
iglooe dc and switching characteristics advance v0.3 2-7 calculating power dissipation quiescent supply current quiescent supply current (i dd ) calculation depends on multiple factors, including operating voltages (v cc , v cci , and v jtag ), operating temperature, syst em clock frequency, and power modes usage. actel recommen ds using the powercalculato r and smartpower software estimation tools to evaluate the projected stat ic and active power based on the user design, power mode usage, operati ng voltage, and temperature. table 2-8 ? quiescent supply current (i dd ), iglooe flas h*freeze mode* core voltage agle600 agle3000 units typical (25c) 1.2 v 34 95 a 1.5 v 72 310 a * i dd includes v cc , v pump , v cci , v jtag , and v ccpll currents. values do not include i/o static contribution (p dc6 and p dc7 ). table 2-9 ? quiescent supply current (i dd ), iglooe sleep mode (v cc = 0 v)* core voltage agle600 agle3000 units v cci /v jtag = 1.2 v (per bank) typical (25c) 1.2 v 1.7 1.7 a v cci /v jtag = 1.5 v (per bank) typical (25c) 1.2 v / 1.5 v 1.8 1.8 a v cci /v jtag = 1.8 v (per bank) typical (25c) 1.2 v / 1.5 v 1.9 1.9 a v cci /v jtag = 2.5 v (per bank) typical (25c) 1.2 v / 1.5 v 2.2 2.2 a v cci /v jtag = 3.3 v (per bank) typical (25c) 1.2 v / 1.5 v 2.5 2.5 a * i dd includes v cc , v pump , and v ccpll currents. values do not in clude i/o static contribution (p dc6 and p dc7 ). table 2-10 ? quiescent supply current (i dd ), iglooe shutdown mode (v cc , v cci = 0 v)* core voltage agle600 agle3000 units typical (25c) 1.2 v / 1.5 v 0 0 a * i dd includes v cc , v pump , v cci , v jtag , and v ccpll currents. values do not include i/o static contribution (p dc6 and p dc7 ).
iglooe dc and switching characteristics 2-8 advance v0.3 table 2-11 ? quiescent supply current, no iglooe flash*freeze mode* core voltage agle600 agle3000 units i cca current 2 typical (25c) 1.2 v 28 89 a 1.5 v 82 320 a i cci or i jtag current 3, 4 v cci /v jtag = 1.2 v (per bank) typical (25c) 1.2 v 1.7 1.7 a v cci /v jtag = 1.5 v (per bank) typical (25c) 1.2 v / 1.5 v 1.8 1.8 a v cci /v jtag = 1.8 v (per bank) typical (25c) 1.2 v / 1.5 v 1.9 1.9 a v cci /v jtag = 2.5 v (per bank) typical (25c) 1.2 v / 1.5 v 2.2 2.2 a v cci /v jtag = 3.3 v (per bank) typical (25c) 1.2 v / 1.5 v 2.5 2.5 a notes: 1. to calculate total device i dd , multiply the number of banks used in i cci and add i cca contribution. 2. includes v cc , v ccpll , and v pump currents. 3. per v cci or v jtag bank 4. values do not include i/o static contribution (p dc6 and p dc7 ).
iglooe dc and switching characteristics advance v0.3 2-9 power per i/o pin table 2-12 ? summary of i/o input buffer power (per pin) ? default i/o software settings v cci (v) static power p dc6 (mw) 1 dynamic power p ac9 (w/mhz) 2 single-ended 3.3 v lvttl/lvcmos 3.3 ? 16.34 3.3 v lvttl/lvcmos ? schmitt trigger 3.3 ? 24.49 2.5 v lvcmos 2.5 ? 4.71 2.5 v lvcmos ? schmitt trigger 2.5 ? 6.13 1.8 v lvcmos 1.8 ? 1.66 1.8 v lvcmos ? schmitt trigger 1.8 ? 1.78 1.5 v lvcmos (jesd8-11) 1.5 ? 1.01 1.5 v lvcmos (jesd8-11) ? schmitt trigger 1.5 ? 0.97 1.2 v lvcmos 3 1.2 ? 0.60 1.2 v lvcmos ? schmitt trigger 3 1.2 ? 0.53 3.3 v pci 3.3 ? 17.76 3.3 v pci ? schmitt trigger 3.3 ? 19.10 3.3 v pci-x 3.3 ? 17.76 3.3 v pci-x ? schmitt trigger 3.3 ? 19.10 voltage-referenced 3.3 v gtl 3.3 2.90 7.07 2.5 v gtl 2.5 2.13 3.62 3.3 v gtl+ 3.3 2.81 2.97 2.5 v gtl+ 2.5 2.57 2.55 hstl (i) 1.5 0.17 0.85 hstl (ii) 1.5 0.17 0.85 sstl2 (i) 2.5 1.38 3.30 sstl2 (ii) 2.5 1.38 3.30 sstl3 (i) 3.3 3.21 8.08 sstl3 (ii) 3.3 3.21 8.08 differential lvds 2.5 2.26 0.95 lvpecl 3.3 5.71 1.62 notes: 1. p dc6 is the static power (where applicable) measured on v cci . 2. p ac9 is the total dynamic power measured on v cci . 3. applicable for iglooe v2 devices only.
iglooe dc and switching characteristics 2-10 advance v0.3 table 2-13 ? summary of i/o output buffer power (p er pin) ? default i/o software settings 1 c load (pf) v cci (v) static power p dc7 (mw) 2 dynamic power p ac10 (w/mhz) 3 single-ended 3.3 v lvttl/lvcmos 5 3.3 ? 148.00 2.5 v lvcmos 5 2.5 ? 83.23 1.8 v lvcmos 5 1.8 ? 54.58 1.5 v lvcmos (jesd8-11) 5 1.5 ? 37.05 1.2 v lvcmos 4 5 1.2 ? 17.94 3.3 v pci 10 3.3 ? 204.61 3.3 v pci-x 10 3.3 ? 204.61 voltage-referenced 3.3 v gtl 10 3.3 ? 24.08 2.5 v gtl 10 2.5 ? 13.52 3.3 v gtl+ 10 3.3 ? 24.10 2.5 v gtl+ 10 2.5 ? 13.54 hstl (i) 20 1.5 7.08 26.22 hstl (ii) 20 1.5 13.88 27.22 sstl2 (i) 30 2.5 16.69 105.56 sstl2 (ii) 30 2.5 25.91 116.60 sstl3 (i) 30 3.3 26.02 114.87 sstl3 (ii) 30 3.3 42.21 131.76 differential lvds ? 2.5 7.70 89.62 lvpecl ? 3.3 19.42 168.02 notes: 1. dynamic power consumption is given for standard lo ad and software default drive strength and output slew. 2. p dc7 is the static power (where applicable) measured on v cci . 3. p ac10 is the total dynamic power measured on v cci . 4. applicable for iglooe v2 devices only.
iglooe dc and switching characteristics advance v0.3 2-11 power consumption of vari ous internal resources table 2-14 ? different components contributing to the dyna mic power consumption in iglooe devices for iglooe v2 or v5 devices, 1.5 v dc core supply voltage parameter definition device-specific dynamic contributions (w/mhz) agle600 agle3000 p ac1 clock contribution of a global rib 19.7 12.77 p ac2 clock contribution of a global spine 4.16 1.85 p ac3 clock contribution of a versatile row 0.88 p ac4 clock contribution of a versatile used as a sequential module 0.11 p ac5 first contribution of a versatile used as a sequential module 0.057 p ac6 second contribution of a versatile used as a sequential module 0.207 p ac7 contribution of a versatile used as a combinatorial module 0.207 p ac8 average contribution of a routing net 0.7 p ac9 contribution of an i/o input pin (standard-dependent) see table 2-12 on page 2-9 . p ac10 contribution of an i/o output pin (standard-dependent) see table 2-13 on page 2-10 . p ac11 average contribution of a ram block during a read operation 25.00 p ac12 average contribution of a ram block during a write operation 30.00 p ac13 dynamic contribut ion for pll 2.70 * for a different output load, drive strength, or slew ra te, actel recommends using th e actel power calculator or smartpower in actel libero ? integrated design environment (ide) software. table 2-15 ? different components contributing to the st atic power consumption in igloo devices for iglooe v2 or v5 devices, 1.5 v dc core supply voltage parameter definition device specific static power (mw) agle600 agle3000 p dc1 array static power in active mode see table 2-11 on page 2-8 . p dc2 array static power in static (idle) mode see table 2-10 on page 2-7 . p dc3 array static power in flash*freeze mode see table 2-8 on page 2-7 . p dc4 static pll contribution 1.84 p dc5 bank quiescent power (v cci -dependent) see table 2-11 on page 2-8 . p dc6 i/o input pin static power (standard-dependent) see table 2-12 on page 2-9 . p dc7 i/o output pin static powe r (standard-dependent) see table 2-13 on page 2-10 .
iglooe dc and switching characteristics 2-12 advance v0.3 table 2-16 ? different components contributing to the dyna mic power consumption in iglooe devices for iglooe v2 devices, 1. 2 v dc core supply voltage parameter definition device-specific dynamic contributions (w/mhz) agle600 agle3000 p ac1 clock contribution of a global rib 12.61 8.17 p ac2 clock contribution of a global spine 2.66 1.18 p ac3 clock contribution of a versatile row 0.56 p ac4 clock contribution of a versatile used as a sequential module 0.071 p ac5 first contribution of a versatile used as a sequential module 0.045 p ac6 second contribution of a versatile used as a sequential module 0.186 p ac7 contribution of a versatile used as a combinatorial module 0.109 p ac8 average contribution of a routing net 0.449 p ac9 contribution of an i/o input pin (standard-dependent) see table 2-8 on page 2-7 . p ac10 contribution of an i/o output pin (standard-dependent) see table 2-9 on page 2-7 and table 2-10 on page 2-7 . p ac11 average contribution of a ram block during a read operation 25.00 p ac12 average contribution of a ram block during a write operation 30.00 p ac13 dynamic pll contribution 2.10 * for a different output load, drive strength, or slew ra te, actel recommends using th e actel power calculator or smartpower in actel libero ide software. table 2-17 ? different components contributing to the st atic power consumption in igloo devices for iglooe v2 devices, 1. 2 v dc core supply voltage parameter definition device specific static power (mw) agle600 agle3000 p dc1 array static power in active mode see table 2-11 on page 2-8 . p dc2 array static power in static (idle) mode see table 2-10 on page 2-7 . p dc3 array static power in flash*freeze mode see table 2-8 on page 2-7 . p dc4 static pll contribution 0.90 p dc5 bank quiescent power (v cci -dependent) see table 2-11 on page 2-8 . p dc6 i/o input pin static power (standard-dependent) see table 2-12 on page 2-9 . p dc7 i/o output pin static powe r (standard-dependent) see table 2-13 on page 2-10 .
iglooe dc and switching characteristics advance v0.3 2-13 power calculation methodology this section describes a simplified method to estimate power consumptio n of an application. for more accurate and detailed power estimations, use the smartpower tool in the libero ide software. the power calculation methodology described below uses the following variables: ? the number of plls as well as the number and the frequency of each output clock generated ? the number of combinatorial and se quential cells used in the design ?the internal clock frequencies ? the number and the standard of i/o pins used in the design ? the number of ram blocks used in the design ? toggle rates of i/o pins as well as versatiles?guidelines are provided in table 2-18 on page 2-15 . ? enable rates of output buffers?guidelines are provided for typical applications in table 2-19 on page 2-15 . ? read rate and write rate to the memory?guide lines are provided for typical applications in table 2-19 on page 2-15 . the calculation should be repeat ed for each clock domain defined in the design. methodology total power consumption?p total p total = p stat + p dyn p stat is the total static power consumption. p dyn is the total dynamic power consumption. total static power consumption?p stat p stat = (p dc1 or p dc2 or p dc3 ) + n banks * p dc5 + n inputs * p dc6 + n outputs * p dc7 n inputs is the number of i/o input buffers used in the design. n outputs is the number of i/o output buffers used in the design. n banks is the number of i/o bank s powered in the design. total dynamic power consumption?p dyn p dyn = p clock + p s-cell + p c-cell + p net + p inputs + p outputs + p memory + p pll global clock contribution?p clock p clock = (p ac1 + n spine * p ac2 + n row * p ac3 + n s-cell * p ac4 ) * f clk n spine is the number of global spines used in the user design?guidelines are provided in table 2-18 on page 2-15 . n row is the number of versatile rows used in the design?guidelines are provided in table 2-18 on page 2-15 . f clk is the global clock signal frequency. n s-cell is the number of versatiles used as sequential modules in the design. p ac1 , p ac2 , p ac3 , and p ac4 are device-dependent. sequential cells contribution?p s-cell p s-cell = n s-cell * (p ac5 + 1 / 2 * p ac6 ) * f clk n s-cell is the number of versatiles used as se quential modules in the design. when a multi-tile sequential cell is used, it should be accounted for as 1. 1 is the toggle rate of versatile outputs?guidelines are provided in table 2-18 on page 2-15 . f clk is the global clock signal frequency.
iglooe dc and switching characteristics 2-14 advance v0.3 combinatorial cells contribution?p c-cell p c-cell = n c-cell * 1 / 2 * p ac7 * f clk n c-cell is the number of versatiles used as combinatorial modu les in the design. 1 is the toggle rate of versatile outputs?guidelines are provided in table 2-18 on page 2-15 . f clk is the global clock signal frequency. routing net contribution?p net p net = (n s-cell + n c-cell ) * 1 / 2 * p ac8 * f clk n s-cell is the number of versatiles used as sequential modules in the design. n c-cell is the number of versatiles used as combinatorial modu les in the design. 1 is the toggle rate of versatile outputs?guidelines are provided in table 2-18 on page 2-15 . f clk is the global clock signal frequency. i/o input buffer contribution?p inputs p inputs = n inputs * 2 / 2 * p ac9 * f clk n inputs is the number of i/o input buffers used in the design. 2 is the i/o buffer toggle rate?guidelines are provided in table 2-18 on page 2-15 . f clk is the global clock signal frequency. i/o output buffer contribution?p outputs p outputs = n outputs * 2 / 2 * 1 * p ac10 * f clk n outputs is the number of i/o output buffers used in the design. 2 is the i/o buffer toggle rate?guidelines are provided in table 2-18 on page 2-15 . 1 is the i/o buffer enable rate ?guidelines are provided in table 2-19 on page 2-15 . f clk is the global clock signal frequency. ram contribution?p memory p memory = p ac11 * n blocks * f read-clock * 2 + p ac12 * n block * f write-clock * 3 n blocks is the number of ram blocks used in the design. f read-clock is the memory read clock frequency. 2 is the ram enable rate for read op erations?guidelines are provided in table 2-19 on page 2-15 . f write-clock is the memory write clock frequency. 3 is the ram enable rate for write op erations?guidelines are provided in table 2-19 on page 2-15 . pll contribution?p pll p pll = p dc4 + p ac13 * f clkout f clkout is the output clock frequency. 1 1. if a pll is used to generate more than one output clock, include each output clock in the formula by adding its corresponding contribution (p ac13 * f clkout product) to the total pll contribution.
iglooe dc and switching characteristics advance v0.3 2-15 guidelines toggle rate definition a toggle rate defines the frequency of a net or logi c element relative to a clock. it is a percentage. if the toggle rate of a net is 1 00%, this means that this net swit ches at half the clock frequency. below are some examples: ? the average toggle rate of a sh ift register is 100% as all flip-flop outputs toggle at half of the clock frequency. ? the average toggle rate of an 8-bit counter is 25%: ? bit 0 (lsb) = 100% ? bit 1 = 50% ? bit 2 = 25% ?? ? bit 7 (msb) = 0.78125% ? average toggle rate = (100% + 50% + 25% + 12.5% + . . . + 0.78125%) / 8 enable rate definition output enable rate is the average percentage of time during which tris tate outputs are enabled. when nontristate output buffers are us ed, the enable rate should be 100%. table 2-18 ? toggle rate guidelines reco mmended for power calculation component definition guideline 1 toggle rate of versatile outputs 10% 2 i/o buffer toggle rate 10% table 2-19 ? enable rate guidelines reco mmended for power calculation component definition guideline 1 i/o output buffer enable rate 100% 2 ram enable rate for read operations 12.5% 3 ram enable rate for write operations 12.5%
iglooe dc and switching characteristics 2-16 advance v0.3 user i/o characteristics timing model figure 2-3 ? timing model operating conditions: std. speed, commercial temperature range (t j = 70c), worst-case v cc = 1.425 v, applicable to 1.5 v dc core voltage, v2 and v5 devices dq y y dq dq dq y combinational cell combinational cell combinational cell i/o module (registered) i/o module (non-registered) register cell register cell i/o module (registered) i/o module (non-registered) lvpecl lvpecl lvds, blvds, m-lvds gtl+ 3.3v y combinational cell y combinational cell y combinational cell i/o module (non-registered) lvttl/lvcmos 3.3 v output drive strength = 24 ma high slew rate i/o module (non-registered) lvcmos 1.5v output drive strength = 12 ma high slew lvttl/lvcmos 3.3 v output drive strength = 12 ma high slew rate i/o module (non-registered) input lvttl/lvcmos 3.3 v clock input lvttl/lvcmos 3.3 v clock input lvttl/lvcmos 3.3 v clock t pd = 1.19 ns t pd = 1.04 ns t dp = 1.75 ns t pd = 1.77 ns t dp = 3.13 ns t pd = 1.33 ns t pd = 0.85 ns t dp = 2.76 ns t dp = 3.30 ns t oclkq = 1.02 ns t dp = 1.85 ns t osud = 0.52 ns t py = 1.10 ns t clkq = 0.90 ns t sud = 0.82 ns t py = 1.10 ns t pd = 0.90 ns t clkq = 0.90 ns t sud = 0.82 ns t py = 1.62 ns t py = 1.10 ns t iclkq = 0.43 ns t isud = 0.47 ns t py = 1.45 ns
iglooe dc and switching characteristics advance v0.3 2-17 figure 2-4 ? input buffer timing model and delays (example) (r) pad y gnd (f) 50% 50% (r) (f) (r) din gnd (f) 50% 50% pad y d clk q i/o interface din to array t dout t dout v cc t pys t py t pys t py v cc v trip v trip v ih v il t py = max(t py (r), t py (f)) t din = max(t din (r), t din (f)) t py t din
iglooe dc and switching characteristics 2-18 advance v0.3 figure 2-5 ? output buffer model and delays (example) t dp (r) pad v ol t dp (f) v trip v trip v oh v cc d 50% 50% v cc 0 v dout 50% 50% 0 v t dout (r) t dout (f) from array pad t dp std load d clk q i/o interface dout d t dout t dp = max(t dp (r), t dp (f)) t dout = max(t dout (r), t dout (f))
iglooe dc and switching characteristics advance v0.3 2-19 figure 2-6 ? tristate output buffer timing model and delays (example) d clk q d clk q 10% v cci t zl v trip 50% t hz 90% v cci t zh v trip 50% 50% t lz 50% eout pad d e 50% t eout (r) 50% t eout (f) pad dout eout d i/o interface e t eout t zls v trip 50% t zhs v trip 50% eout pad d e 50% 50% t eout (r) t eout (f) 50% v cc v cc v cc v cci v cc v cc v cc v oh v ol v ol t zl , t zh , t hz , t lz , t zls , t zhs t eout = max(t eout (r), t eout (f))
iglooe dc and switching characteristics 2-20 advance v0.3 overview of i/o performance summary of i/o dc input and output levels ? default i/o software settings table 2-20 ? summary of maximum and minimu m dc input and output levels applicable to commercial and industrial conditions i/o standard drive strength slew rate v il v ih v ol v oh i ol 1 i oh 1 min., v max., v min., v max., v max., v min., v ma ma 3.3 v lvttl / 3.3 v lvcmos 12 ma high ?0.3 0.8 2 3.6 0.4 2.4 12 12 2.5 v lvcmos 12 ma high ?0.3 0. 7 1.7 2.7 0.7 1.7 12 12 1.8 v lvcmos 12 ma high ?0.3 0.35 * v cci 0.65*v cci 1.9 0.45 v cci ? 0.45 12 12 1.5 v lvcmos 12 ma high ?0.3 0.35 * v cci 0.65*v cci 1.575 0.25 * v cci 0.75 * v cci 12 12 1.2 v lvcmos 4 2 ma high ?0.3 0.35 * v cci 0.65 * v cci 1.26 0.25 * v cci 0.75 * v cci 22 3.3 v pci per pci specification 3.3 v pci-x per pci-x specification 3.3 v gtl 25 ma 2 high ?0.3 v ref ? 0.05 v ref + 0.05 3.6 0.4 ? 25 25 2.5 v gtl 25 ma 2 high ?0.3 v ref ? 0.05 v ref + 0.05 2.7 0.4 ? 25 25 3.3 v gtl+ 35 ma high ?0.3 v ref ? 0.1 v ref + 0.1 3.6 0.6 ? 35 35 2.5 v gtl+ 33 ma high ?0.3 v ref ? 0.1 v ref + 0.1 2.7 0.6 ? 33 33 hstl (i) 8 ma high ?0.3 v ref ? 0.1 v ref + 0.1 1.575 0.4 v cci ? 0.4 8 8 hstl (ii) 15 ma 2 high ?0.3 v ref ? 0.1 v ref + 0.1 1.575 0.4 v cci ? 0.4 15 15 sstl2 (i) 15 ma high ?0.3 v ref ? 0.2 v ref + 0.2 2.7 0.54 v cci ? 0.62 15 15 sstl2 (ii) 18 ma high ?0.3 v ref ? 0.2 v ref + 0.2 2.7 0.35 v cci ? 0.43 18 18 sstl3 (i) 14 ma high ?0.3 v ref ? 0.2 v ref + 0.2 3.6 0.7 v cci ? 1.1 14 14 sstl3 (ii) 21 ma high ?0.3 v ref ? 0.2 v ref + 0.2 3.6 0.5 v cci ? 0.9 21 21 notes: 1. currents are measured at 85c junction temperature. 2. output drive strength is below jedec specification. 3. output slew rates can be extracted from i bis models , located at http://www.actel.com/download/ibis/default.aspx . 4. applicable to v2 devices only, operating in the 1.2 v core range.
iglooe dc and switching characteristics advance v0.3 2-21 table 2-21 ? summary of maximum and mi nimum dc input levels applicable to commercial and industrial conditions dc i/o standards commercial 1 industrial 2 i il i ih i il i ih a a a a 3.3 v lvttl / 3.3 v lvcmos 10 10 15 15 2.5 v lvcmos 10 10 15 15 1.8 v lvcmos 10 10 15 15 1.5 v lvcmos 10 10 15 15 1.2 v lvcmos 3 10 10 15 15 3.3 v pci 10 10 15 15 3.3 v pci-x 10 10 15 15 3.3 v gtl 10 10 15 15 2.5 v gtl 10 10 15 15 3.3 v gtl+ 10 10 15 15 2.5 v gtl+ 10 10 15 15 hstl (i) 10 10 15 15 hstl (ii) 10 10 15 15 sstl2 (i) 10 10 15 15 sstl2 (ii) 10 10 15 15 sstl3 (i) 10 10 15 15 sstl3 (ii) 10 10 15 15 notes: 1. commercial range (0c < t a < 70c) 2. industrial range (?40c < t a < 85c) 3. applicable to v2 devices only, operating in the 1.2 v core range.
iglooe dc and switching characteristics 2-22 advance v0.3 summary of i/o timing characte ristics ? defaul t i/o software settings table 2-22 ? summary of ac measuring points standard input reference voltage (v ref_typ ) board termination voltage (v tt_ref ) measuring trip point (v trip ) 3.3 v lvttl / 3.3 v lvcmos ? ? 1.4 v 2.5 v lvcmos ? ? 1.2 v 1.8 v lvcmos ? ? 0.90 v 1.5 v lvcmos ? ? 0.75 v 1.2 v lvcmos ? ? 0.6 v 3.3 v pci ? ? 0.285*v cci (rr) ? ? 0.615*v cci (ff)) 3.3 v pci-x ? ? 0.285*v cci (rr) ? ? 0.615*v cci (ff) 3.3 v gtl 0.8 v 1.2 v v ref 2.5 v gtl 0.8 v 1.2 v v ref 3.3 v gtl+ 1.0 v 1.5 v v ref 2.5 v gtl+ 1.0 v 1.5 v v ref hstl (i) 0.75 v 0.75 v v ref hstl (ii) 0.75 v 0.75 v v ref sstl2 (i) 1.25 v 1.25 v v ref sstl2 (ii) 1.25 v 1.25 v v ref sstl3 (i) 1.5 v 1.485 v v ref sstl3 (ii) 1.5 v 1.485 v v ref lvds ? ? cross point lvpecl ? ? cross point table 2-23 ? i/o ac paramete r definitions parameter definition t dp data to pad delay through the output buffer t py pad to data delay through the input buffer with schmit t trigger disabled t dout data to output buffer delay through the i/o interface t eout enable to output buffer tristate control delay throug h the i/o interface t din input buffer to data dela y through the i/o interface t pys pad to data delay through the input buffer with schmitt trigger enabled t hz enable to pad delay through the output buffer?high to z t zh enable to pad delay through the output buffer?z to high t lz enable to pad delay through the output buffer?low to z t zl enable to pad delay through the output buffer?z to low t zhs enable to pad delay through the output buffer with delayed enable?z to high t zls enable to pad delay through the output buffer with delaye d enable?z to low
iglooe dc and switching characteristics advance v0.3 2-23 table 2-24 ? summary of i/o timing character istics?software default settings std. speed grade, commerc ial-case conditions: t j = 70c, worst-case v cc = 1.425 v, worst-case v cci =3.0v i/o standard drive strength (ma) slew rate capacitive load (pf) external resistor ( ) t dout (ns) t dp (ns) t din (ns) t py (ns) t pys (ns) t eout (ns) t zl (ns) t zh (ns) t lz (ns) t hz (ns) t zls (ns) t zhs (ns) units 3.3 v lvttl / 3.3 v lvcmos 12 ma high 5 ? 0.98 2.18 0.19 1.10 1. 37 0.67 2.22 1.72 2.78 3.17 5.85 5.35 ns 2.5 v lvcmos 12 ma high 5 ? 0.98 2.21 0. 19 1.34 1.45 0.67 2.25 1.89 2.86 3.06 5.88 5.52 ns 1.8 v lvcmos 12 ma high 5 ? 0.98 2.44 0. 19 1.30 1.63 0.67 2.48 2.07 3.15 3.67 6.11 5.70 ns 1.5 v lvcmos 12 ma high 5 ? 0.98 2.77 0. 19 1.50 1.82 0.67 2.82 2.35 3.33 3.78 6.45 5.98 ns 3.3 v pci per pci spec high 10 25 2 0.98 2.44 0.19 0.98 1. 45 0.67 2.49 1.84 2.79 3.17 6.12 5.47 ns 3.3 v pci-x per pci-x spec high 10 25 2 0.98 2.44 0.19 0.94 1. 37 0.67 2.49 1.84 2.79 3.17 6.12 5.47 ns 3.3 v gtl 25 ma high 10 25 0.98 1.83 0.19 2.41 ? 0.67 1.84 1.83 0.00 0.00 5.47 5.46 ns 2.5 v gtl 25 ma high 10 25 0.98 1.90 0.19 2.04 ? 0.67 1.94 1.87 0.00 0.00 5.57 5.50 ns 3.3 v gtl+ 35 ma high 10 25 0.98 1.85 0.19 1.35 ? 0.67 1.88 1.81 0.00 0.00 5.51 5.44 ns 2.5 v gtl+ 33 ma high 10 25 0.98 1.97 0.19 1.29 ? 0.67 2.00 1.84 0.00 0.00 5.63 5.47 ns hstl (i) 8 ma high 20 50 0.98 2.74 0.19 1.77 ? 0.67 2.79 2.73 0.00 0.00 6.42 6.36 ns hstl (ii) 15 ma high 20 25 0.98 2.62 0.19 1.77 ? 0.67 2.66 2.40 0.00 0.00 6.29 6.03 ns sstl2 (i) 15 ma high 30 50 0.98 1.91 0.19 1.15 ? 0.67 1.94 1.72 0.00 0.00 5.57 5.35 ns sstl2 (ii) 18 ma high 30 25 0.98 1. 94 0.19 1.15 ? 0.67 1.97 1.66 0.00 0.00 5.60 5.29 ns sstl3 (i) 14 ma high 30 50 0.98 2.05 0.19 1.09 ? 0.67 2.09 1.71 0.00 0.00 5.72 5.34 ns sstl3 (ii) 21 ma high 30 25 0.98 1. 86 0.19 1.09 ? 0.67 1.89 1.58 0.00 0.00 5.52 5.21 ns lvds/b-lvds/ m-lvds 24 ma high ? ? 0.981.770.191.62???????? ns lvpecl 24 ma high ? ? 0.981.750.191.45???????? ns notes: 1. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-6 for derating values. 2. resistance is used to measure i/o propagatio n delays as defined in pci specifications. see figure 2-12 on page 2-42 for connectivity. this resistor is not required during normal operation.
iglooe dc and switching characteristics 2-24 advance v0.3 table 2-25 ? summary of i/o timing character istics?software default settings std. speed grade, commerc ial-case conditions: t j = 70c, worst-case v cc = 1.14 v, worst-case v cci = 3.0 v i/o standard drive strength (ma) slew rate capacitive load (pf) external resistor ( ) t dout (ns) t dp (ns) t din (ns) t py (ns) t pys (ns) t eout (ns) t zl (ns) t zh (ns) t lz (ns) t hz (ns) t zls (ns) t zhs (ns) units 3.3 v lvttl / 3.3 v lvcmos 12 ma high 5 ? 1.55 2.46 0.26 1.31 1.57 1.10 2.51 2.04 3.27 3.96 8.32 7.85 ns 2.5 v lvcmos 12 ma high 5 ? 1.55 2.50 0. 26 1.55 1.76 1.10 2.54 2.22 3.34 3.83 8.35 8.03 ns 1.8 v lvcmos 12 ma high 5 ? 1.55 2.74 0. 26 1.53 1.95 1.10 2.79 2.41 3.66 4.54 8.60 8.21 ns 1.5 v lvcmos 12 ma high 5 ? 1.55 3.09 0. 26 1.72 2.15 1.10 3.15 2.70 3.85 4.66 8.96 8.51 ns 1.2 v lvcmos 2ma high 5 ? 1.55 4.07 0.26 2. 06 2.96 1.10 3.90 3.43 3. 80 4.02 9.49 9.03 ns 3.3 v pci per pci spec high 10 25 2 1.55 2.74 0.26 1.19 1. 63 1.10 2.80 2.16 3.28 3.96 8.60 7.97 ns 3.3 v pci-x per pci-x spec high 10 25 2 1.55 2.74 0.26 1.21 1. 57 1.10 2.80 2.16 3.28 3.96 8.60 7.97 ns 3.3 v gtl 25 ma high 10 25 1.55 2.09 0.26 2.75 ? 1.10 2.10 2.09 ? ? 7.91 7.89 ns 2.5 v gtl 25 ma high 10 25 1.55 2.16 0.26 2.35 ? 1.10 2.20 2.13 ? ? 8.01 7.94 ns 3.3 v gtl+ 35 ma high 10 25 1.55 2.11 0.26 1.61 ? 1.10 2.15 2.07 ? ? 7.95 7.88 ns 2.5 v gtl+ 33 ma high 10 25 1.55 2.23 0.26 1.55 ? 1.10 2.28 2.11 ? ? 8.08 7.91 ns hstl (i) 8 ma high 20 50 1.55 3.10 0.26 1.94 ? 1.10 3.12 3.10 ? ? 8.93 8.91 ns hstl (ii) 15 ma high 20 25 1.55 2.93 0.26 1.94 ? 1.10 2.98 2.75 ? ? 8.79 8.55 ns sstl2 (i) 15 ma high 30 50 1.55 2.17 0.26 1.39 ? 1.10 2.21 2.04 ? ? 8.02 7.84 ns sstl2 (ii) 18 ma high 30 25 1.55 2.20 0.26 1.39 ? 1.10 2.24 1.97 ? ? 8.05 7.78 ns sstl3 (i) 14 ma high 30 50 1.55 2.32 0.26 1.32 ? 1.10 2.37 2.02 ? ? 8.17 7.83 ns sstl3 (ii) 21 ma high 30 25 1.55 2.12 0.26 1.32 ? 1.10 2.16 1.89 ? ? 7.97 7.70 ns lvds/b-lvds/ m-lvds 24 ma high ? ? 1.55 2.19 0.26 1.88 ? ? ? ? ? ? ? ? ns lvpecl 24 ma high ? ? 1.55 2.16 0.26 1.70 ? ? ? ? ? ? ? ? ns notes: 1. for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-6 for derating values. 2. resistance is used to measure i/o propagatio n delays as defined in pci specifications. see figure 2-12 on page 2-42 for connectivity. this resistor is not required during normal operation.
iglooe dc and switching characteristics advance v0.3 2-25 detailed i/o dc characteristics table 2-26 ? input capacitance symbol definition conditions min. max. units c in input capacitance v in = 0, f = 1.0 mhz 8 pf c inclk input capacitance on the clock pin v in = 0, f = 1.0 mhz 8 pf table 2-27 ? i/o output buffer maximum resistances 1 standard drive strength r pull-down ( ) 2 r pull-up ( ) 3 3.3 v lvttl / 3.3 v lvcmos 4 ma 100 300 8 ma 50 150 12 ma 25 75 16 ma 17 50 24 ma 11 33 2.5 v lvcmos 4 ma 100 200 8 ma 50 100 12 ma 25 50 16 ma 20 40 24 ma 11 22 1.8 v lvcmos 2 ma 200 225 4 ma 100 112 6 ma 50 56 8 ma 50 56 12 ma 20 22 16 ma 20 22 1.5 v lvcmos 2 ma 200 224 4 ma 100 112 6 ma 67 75 8 ma 33 37 12 ma 33 37 1.2 v lvcmos 2 ma tbd tbd 3.3 v pci/pci-x per pci/pci-x specification 25 75 3.3 v gtl 25 ma 11 ? 2.5 v gtl 25 ma 14 ? 3.3 v gtl+ 35 ma 12 ? notes: 1. these maximum values are provided for informatio nal reasons only. minimum output buffer resistance values depend on v cci , drive strength selection, temperature, an d process. for board design considerations and detailed output buffer resistances, use the corres ponding ibis models located on the actel website at http://www.actel.com/tech docs/models /ibis.html . 2. r (pull-down-max) = (v olspec ) / i olspec 3. r (pull-up-max) = (v ccimax ? v ohspec ) / i ohspec
iglooe dc and switching characteristics 2-26 advance v0.3 2.5 v gtl+ 33 ma 15 ? hstl (i) 8 ma 50 50 hstl (ii) 15 ma 25 25 sstl2 (i) 15 ma 27 31 sstl2 (ii) 18 ma 13 15 sstl3 (i) 14 ma 44 69 sstl3 (ii) 21 ma 18 32 table 2-28 ? i/o weak pull-up/pull-down resistances minimum and maximum we ak pull-up/pull-down resistance values v cci r( (weak pull-up) 1 ( ) r (weak pull-down) 2 ( ) min. max. min. max. 3.3 v 10 k 45 k 10 k 45 k 2.5 v 11 k 55 k 12 k 74 k 1.8 v 18 k 70 k 17 k 110 k 1.5 v 19 k 90 k 19 k 140 k 1.2 v tbd tbd tbd tbd notes: 1. r (weak pull-down-max) = (v olspec ) / i weak pull-down-min 2. r (weak pull-up-max) = (v ccimax ? v ohspec ) / i weak pull-up-min table 2-27 ? i/o output buffer maximum resistances 1 (continued) standard drive strength r pull-down ( ) 2 r pull-up ( ) 3 notes: 1. these maximum values are provided for informatio nal reasons only. minimum output buffer resistance values depend on v cci , drive strength selection, temperature, an d process. for board design considerations and detailed output buffer resistances, use the corres ponding ibis models located on the actel website at http://www.actel.com/tech docs/models /ibis.html . 2. r (pull-down-max) = (v olspec ) / i olspec 3. r (pull-up-max) = (v ccimax ? v ohspec ) / i ohspec
iglooe dc and switching characteristics advance v0.3 2-27 table 2-29 ? i/o short currents i osh /i osl drive strength i osh (ma)* i osl (ma)* 3.3 v lvttl / 3.3 v lvcmos 4 ma 25 27 8 ma 51 54 12 ma 103 109 16 ma 132 127 24 ma 268 181 2.5 v lvcmos 4 ma 16 18 8 ma 32 37 12 ma 65 74 16 ma 83 87 24 ma 169 124 1.8 v lvcmos 2 ma 9 11 4 ma 17 22 6 ma 35 44 8 ma 45 51 12 ma 91 74 16 ma 91 74 1.5 v lvcmos 2 ma 13 16 4 ma 25 33 6 ma 32 39 8 ma 66 55 12 ma 66 55 1.2 v lvcmos 2 ma tbd tbd 3.3 v pci/pcix per pci/pci-x specification per pci curves 3.3 v gtl 25 ma 268 181 2.5 v gtl 25 ma 169 124 3.3 v gtl+ 35 ma 268 181 2.5 v gtl+ 33 ma 169 124 hstl (i) 8 ma 32 39 hstl (ii) 15 ma 66 55 sstl2 (i) 15 ma 83 87 sstl2 (ii) 18 ma 169 124 sstl3 (i) 14 ma 51 54 sstl3 (ii) 21 ma 103 109 * t j = 100c
iglooe dc and switching characteristics 2-28 advance v0.3 the length of time an i/o can withstand i osh /i osl events depends on the junction temperature. the reliability data below is based on a 3.3 v, 36 ma i/o setting, which is the worst case for this type of analysis. for example, at 110c, the short current condition would have to be sustain ed for more than three months to cause a reliability concern. the i/o desi gn does not contain any short circuit protection, but such protection would only be needed in extremely prolonged stress conditions. table 2-30 ? duration of short circui t event before failure temperature time before failure ?40c > 20 years 0c > 20 years 25c > 20 years 70c 5 years 85c 2 years 100c 6 months 110c 3 months table 2-31 ? schmitt trigger input hysteresis hysteresis voltage value (typ.) for schmitt mode input buffers input buffer configuratio n hysteresis value (typ.) 3.3 v lvttl/lvcmos/pci/pci-x (schmitt trigger mode) 240 mv 2.5 v lvcmos (schmitt trigger mode) 140 mv 1.8 v lvcmos (schmi tt trigger mode) 80 mv 1.5 v lvcmos (schmi tt trigger mode) 60 mv 1.2 v lvcmos (schmi tt trigger mode) 40 mv table 2-32 ? i/o input rise time, fall time, and related i/o reliability* input buffer input rise/fall time (min.) input rise/fall time (max.) reliability lvttl/lvcmos (schmitt trigger disabled) no requirement 10 ns* 20 years (110c) lvttl/lvcmos (schmitt trigger enabled) no requirement no requirement, but input noise voltage cannot exceed schmitt hysteresis. 20 years (110c) hstl/sstl/gtl no requirement 10 ns* 10 years (100c) lvds/b-lvds/m-lvds/lvpecl no re quirement 10 ns* 10 years (100c) * the maximum input rise/fall time is related to the noise induced into the input buffer trace. if the noise is low, then the rise time and fall time of input buffers can be increased beyond the maximum value. the longer the rise/fall times, the more susceptible the input signal is to the board noise. actel recommends signal integrity evaluation/characterization of the system to ensure that there is no excessive noise coupling into input signals.
iglooe dc and switching characteristics advance v0.3 2-29 single-ended i/o characteristics 3.3 v lvttl / 3.3 v lvcmos low-voltage transistor?transistor logic is a general purpose standard (eia/jesd) for 3.3 v applications. it uses an lvttl input buffer and push-pull output buffer. the 3.3 v lvcmos standard is supported as part of the 3.3 v lvttl support. table 2-33 ? minimum and maximum dc input and output levels 3.3 v lvttl / 3.3 v lvcmos v il v ih v ol v oh i ol i oh i osh i osl i il i ih drive strength min., v max., v min., v max., v max., v min., v ma ma max., ma 1 max., ma 1 a 2 a 2 4 ma ?0.3 0.8 2 3.6 0.4 2.4 4 4 25 27 10 10 8 ma ?0.3 0.8 2 3.6 0.4 2.4 8 8 51 54 10 10 12 ma ?0.3 0.8 2 3.6 0.4 2.4 12 12 103 109 10 10 16 ma ?0.3 0.8 2 3.6 0.4 2.4 16 16 132 127 10 10 24 ma ?0.3 0.8 2 3.6 0.4 2.4 24 24 268 181 10 10 notes: 1. currents are measured at 100c junc tion temperature an d maximum voltage. 2. currents are measured at 85c junction temperature. 3. software default selection highlighted in gray. figure 2-7 ? ac loading table 2-34 ? ac waveforms, measuring points, and capacitive loads input low (v) input high (v) measuring point* (v) v ref (typ.) (v) c load (pf) 03.31.4?5 * measuring point = v trip . see table 2-22 on page 2-22 for a complete table of trip points. test point test point enable path datapath 35 pf r = 1 k r to v cci for t lz /t zl /t zls r to gnd for t hz /t zh /t zhs 35 pf for t zh /t zh s/t zl /t zls 5 pf for t hz /t lz
iglooe dc and switching characteristics 2-30 advance v0.3 timing characteristics 1.5 v dc core voltage table 2-35 ? 3.3 v lvttl / 3.3 v lvcmos low slew ? applies to 1.5 v dc core voltage commercial-case conditions: t j = 70c, worst-case v cc = 1.425 v, worst-case v cci = 3.0 v drive strength speed grade t dout t dp t din t py t pys t eout t zl t zh t lz t hz t zls t zhs units 4 ma std. 0.98 5.04 0.19 1.10 1.37 0. 67 5.13 4.10 2.33 2.22 8.76 7.73 ns 8 ma std. 0.98 4.16 0.19 1.10 1.37 0. 67 4.23 3.54 2.60 2.72 7.86 7.17 ns 12 ma std. 0.98 3.53 0.19 1.10 1.37 0. 67 3.60 3.12 2.78 3.03 7.23 6.75 ns 16 ma std. 0.98 3.36 0.19 1.10 1.37 0. 67 3.42 3.03 2.82 3.12 7.05 6.66 ns 24 ma std. 0.98 3.26 0.19 1.10 1.37 0. 67 3.32 3.04 2.87 3.45 6.95 6.67 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-6 for derating values. table 2-36 ? 3.3 v lvttl / 3.3 v lvcmos high slew ? applies to 1.5 v dc core voltage commercial-case conditions: t j = 70c, worst-case v cc = 1.425 v, worst-case v cci = 3.0 v drive strength speed grade t dout t dp t din t py t pys t eout t zl t zh t lz t hz t zls t zhs units 4 ma std. 0.98 2.93 0.19 1.10 1.37 0. 67 2.99 2.33 0.00 2.34 6.62 5.96 ns 8 ma std. 0.98 2.45 0.19 1.10 1.37 0. 67 2.50 1.92 2.60 2.84 6.13 5.55 ns 12 ma std. 0.98 2.18 0.19 1.10 1.37 0.67 2.22 1.72 2.78 3.17 5.85 5.35 ns 16 ma std. 0.98 2.13 0.19 1.10 1.37 0. 67 2.17 1.69 2.83 3.26 5.80 5.32 ns 24 ma std. 0.98 2.15 0.19 1.10 1.37 0. 67 2.19 1.64 2.88 3.58 5.82 5.27 ns notes: 1. software default select ion highlighted in gray. 2. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-6 for derating values.
iglooe dc and switching characteristics advance v0.3 2-31 1.2 v dc core voltage table 2-37 ? 3.3 v lvttl / 3.3 v lvcmos low slew ? applies to 1.2 v dc core voltage commercial-case conditions: t j = 70c, worst-case v cc = 1.14 v, worst-case v cci = 3.0 v drive strength speed grade t dout t dp t din t py t pys t eout t zl t zh t lz t hz t zls t zhs units 4 ma std. 1.55 5.53 0.26 1.31 1.57 1. 10 5.63 4.53 2.78 2.85 11.44 10.34 ns 8 ma std. 1.55 4.58 0.26 1.31 1.57 1. 10 4.67 3.95 3.07 3.44 10.48 9.76 ns 12 ma std. 1.55 3.92 0.26 1.31 1.57 1. 10 3.99 3.51 3.27 3.80 9.80 9.32 ns 16 ma std. 1.55 3.73 0.26 1.31 1.57 1. 10 3.79 3.41 3.31 3.90 9.60 9.22 ns 24 ma std. 1.55 3.62 0.26 1.31 1.57 1. 10 3.69 3.42 3.36 4.28 9.50 9.23 ns note: for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-6 for derating values. table 2-38 ? 3.3 v lvttl / 3.3 v lvcmos high slew ? applies to 1.2 v dc core voltage commercial-case conditions: t j = 70c, worst-case v cc = 1.14 v, worst-case v cci = 3.0 v drive strength speed grade t dout t dp t din t py t pys t eout t zl t zh t lz t hz t zls t zhs units 4 ma std. 1.55 3.27 0.26 1.31 1.57 1. 10 3.33 2.67 2.78 2.99 9.14 8.48 ns 8 ma std. 1.55 2.75 0.26 1.31 1.57 1. 10 2.81 2.24 3.07 3.58 8.61 8.05 ns 12 ma std. 1.55 2.46 0.26 1.31 1.57 1.10 2.51 2.04 3.27 3.96 8.32 7.85 ns 16 ma std. 1.55 2.41 0.26 1.31 1.57 1. 10 2.46 2.00 3.32 4.06 8.27 7.81 ns 24 ma std. 1.55 2.43 0.26 1.31 1.57 1. 10 2.48 1.95 3.37 4.44 8.29 7.76 ns notes: 1. software default select ion highlighted in gray. 2. for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-6 for derating values.
iglooe dc and switching characteristics 2-32 advance v0.3 2.5 v lvcmos low-voltage cmos for 2.5 v is an extension of the lvcmos standard (jesd8-5) used for general- purpose 2.5 v applications. it uses a 5 v?tolerant input buffer and push-pull output buffer. table 2-39 ? minimum and maximum dc input and output levels 2.5 v lvcmos v il v ih v ol v oh i ol i oh i osh i osl i il i ih drive strength min., v max., v min., v max., v max., v min., v ma ma max., ma 1 max., ma 1 a 2 a 2 4 ma ?0.3 0.7 1.7 2.7 0.7 1.7 4 4 16 18 10 10 8 ma ?0.3 0.7 1.7 2.7 0.7 1.7 8 8 32 37 10 10 12 ma ?0.3 0.7 1.7 2.7 0.7 1.7 12 12 65 74 10 10 16 ma ?0.3 0.7 1.7 2.7 0.7 1.7 16 16 83 87 10 10 24 ma ?0.3 0.7 1.7 2.7 0.7 1.7 24 24 169 124 10 10 notes: 1. currents are measured at 100c junc tion temperature an d maximum voltage. 2. currents are measured at 85c junction temperature. 3. software default selection highlighted in gray. figure 2-8 ? ac loading table 2-40 ? ac waveforms, measuring points, and capacitive loads input low (v) input high (v) measuring point* (v) v ref (typ.) (v) c load (pf) 02.51.2?5 * measuring point = v trip . see table 2-22 on page 2-22 for a complete table of trip points. test point test point enable path datapath 35 pf r = 1 k r to v cci for t lz /t zl /t zls r to gnd for t hz /t zh /t zhs 35 pf for t zh /t zh s/t zl /t zls 5 pf for t hz /t lz
iglooe dc and switching characteristics advance v0.3 2-33 timing characteristics 1.5 v dc core voltage table 2-41 ? 2.5 v lvcmos low slew ? applie s to 1.5 v dc core voltage commercial-case conditions: t j = 70c, worst-case v cc = 1.425 v, worst-case v cci = 2.3 v drive strength speed grade t dout t dp t din t py t pys t eout t zl t zh t lz t hz t zls t zhs units 4 ma std. 0.98 5.70 0.19 1.34 1.45 0. 67 5.81 4.87 2.34 2.01 9.44 8.50 ns 8 ma std. 0.98 4.71 0.19 1.34 1.45 0. 67 4.79 4.17 2.65 2.60 8.42 7.80 ns 12 ma std. 0.98 4.00 0.19 1.34 1.45 0. 67 4.07 3.67 2.86 2.99 7.70 7.30 ns 16 ma std. 0.98 3.78 0.19 1.34 1.45 0. 67 3.85 3.56 2.90 3.09 7.48 7.19 ns 24 ma std. 0.98 3.69 0.19 1.34 1.45 0. 67 3.75 3.57 2.96 3.46 7.38 7.20 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-6 for derating values. table 2-42 ? 2.5 v lvcmos high slew ? appl ies to 1.5 v dc core voltage commercial-case conditions: t j = 70c, worst-case v cc = 1.425 v, worst-case v cci = 2.3 v drive strength speed grade t dout t dp t din t py t pys t eout t zl t zh t lz t hz t zls t zhs units 4 ma std. 0.98 3.02 0.19 1.34 1.45 0. 67 3.08 2.74 2.34 2.08 6.71 6.37 ns 8 ma std. 0.98 2.51 0.19 1.34 1.45 0. 67 2.56 2.17 2.65 2.69 6.19 5.80 ns 12 ma std. 0.98 2.21 0.19 1.34 1.45 0.67 2.25 1.89 2.86 3.06 5.88 5.52 ns 16 ma std. 0.98 2.16 0.19 1.34 1.45 0. 67 2.20 1.84 2.90 3.17 5.83 5.47 ns 24 ma std. 0.98 2.17 0.19 1.34 1.45 0. 67 2.21 1.77 2.96 3.57 5.84 5.40 ns notes: 1. software default select ion highlighted in gray. 2. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-6 for derating values.
iglooe dc and switching characteristics 2-34 advance v0.3 1.2 v dc core voltage table 2-43 ? 2.5 v lvcmos low slew ? applie s to 1.2 v dc core voltage commercial-case conditions: t j = 70c, worst-case v cc = 1.14 v, worst-case v cci = 2.3 v drive strength speed grade t dout t dp t din t py t pys t eout t zl t zh t lz t hz t zls t zhs units 4 ma std. 1.55 6.24 0.26 1.55 1.76 1. 10 6.36 5.34 2.80 2.61 12.17 11.15 ns 8 ma std. 1.55 5.17 0.26 1.55 1.76 1. 10 5.27 4.61 3.12 3.30 11.08 10.42 ns 12 ma std. 1.55 4.41 0.26 1.55 1.76 1. 10 4.49 4.08 3.34 3.75 10.30 9.89 ns 16 ma std. 1.55 4.18 0.26 1.55 1.76 1. 10 4.26 3.96 3.39 3.87 10.06 9.77 ns 24 ma std. 1.55 4.08 0.26 1.55 1.76 1. 10 4.15 3.98 3.45 4.30 9.96 9.79 ns note: for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-6 for derating values. table 2-44 ? 2.5 v lvcmos high slew ? appl ies to 1.2 v dc core voltage commercial-case conditions: t j = 70c, worst-case v cc = 1.14 v, worst-case v cci = 2.3 v drive strength speed grade t dout t dp t din t py t pys t eout t zl t zh t lz t hz t zls t zhs units 4 ma std. 1.55 3.36 0.26 1.55 1.76 1. 10 3.43 3.11 2.80 2.70 9.23 8.92 ns 8 ma std. 1.55 2.82 0.26 1.55 1.76 1. 10 2.87 2.51 3.12 3.40 8.68 8.32 ns 12 ma std. 1.55 2.50 0.26 1.55 1.76 1.10 2.54 2.22 3.34 3.83 8.35 8.03 ns 16 ma std. 1.55 2.44 0.26 1.55 1.76 1. 10 2.49 2.16 3.39 3.95 8.29 7.97 ns 24 ma std. 1.55 2.45 0.26 1.55 1.76 1. 10 2.50 2.09 3.45 4.42 8.31 7.90 ns notes: 1. software default select ion highlighted in gray. 2. for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-6 for derating values.
iglooe dc and switching characteristics advance v0.3 2-35 1.8 v lvcmos low-voltage cmos for 1.8 v is an extension of the lvcmos standard (jesd8-5) used for general- purpose 1.8 v applications. it uses a 1.8 v input buffer and a push-pull output buffer. table 2-45 ? minimum and maximum dc input and output levels 1.8 v lvcmos v il v ih v ol v oh i ol i oh i osh i osl i il i ih drive strength min., v max., v min., v max., v max., v min., v ma ma max., ma 1 max., ma 1 a 2 a 2 2 ma ?0.3 0.35 * v cci 0.65 * v cci 1.9 0.45 v cci ? 0.45 2 2 9 11 10 10 4 ma ?0.3 0.35 * v cci 0.65 * v cci 1.9 0.45 v cci ? 0.45 4 4 17 22 10 10 6 ma ?0.3 0.35 * v cci 0.65 * v cci 1.9 0.45 v cci ? 0.45 6 6 35 44 10 10 8 ma ?0.3 0.35 * v cci 0.65 * v cci 1.9 0.45 v cci ? 0.45 8 8 45 51 10 10 12 ma ?0.3 0.35 * v cci 0.65 * v cci 1.9 0.45 v cci ? 0.45 12 12 91 74 10 10 16 ma ?0.3 0.35 * v cci 0.65 * v cci 1.9 0.45 v cci ? 0.45 16 16 91 74 10 10 notes: 1. currents are measured at 100c junc tion temperature an d maximum voltage. 2. currents are measured at 85c junction temperature. 3. software default selection highlighted in gray. figure 2-9 ? ac loading table 2-46 ? ac waveforms, measuring points, and capacitive loads input low (v) input high (v) measuring point* (v) v ref (typ.) (v) c load (pf) 01.80.9?5 * measuring point = v trip . see table 2-22 on page 2-22 for a complete table of trip points. test point test point enable path datapath 35 pf r = 1 k r to v cci for t lz /t zl /t zls r to gnd for t hz /t zh /t zhs 35 pf for t zh /t zh s/t zl /t zls 5 pf for t hz /t lz
iglooe dc and switching characteristics 2-36 advance v0.3 timing characteristics 1.5 v dc core voltage table 2-47 ? 1.8 v lvcmos low slew ? applie s to 1.5 v dc core voltage commercial-case conditions: t j = 70c, worst-case v cc = 1.425 v, worst-case v cci = 1.7 v drive strength speed grade t dout t dp t din t py t pys t eout t zl t zh t lz t hz t zls t zhs units 2 ma std. 0.98 7.53 0.19 1.30 1.63 0. 67 7.67 6.34 2.40 1. 21 11.30 9.97 ns 4 ma std. 0.98 6.24 0.19 1.30 1.63 0. 67 6.36 5.38 2.77 2.48 9.99 9.01 ns 6 ma std. 0.98 5.33 0.19 1.30 1.63 0. 67 5.43 4.73 3.01 2.96 9.06 8.36 ns 8 ma std. 0.98 5.02 0.19 1.30 1.63 0. 67 5.11 4.60 3.07 3.09 8.74 8.23 ns 12 ma std. 0.98 4.93 0.19 1.30 1.63 0. 67 5.02 4.61 3.15 3.57 8.65 8.24 ns 16 ma std. 0.98 4.93 0.19 1.30 1.63 0. 67 5.02 4.61 3.15 3.57 8.65 8.24 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-6 for derating values. table 2-48 ? 1.8 v lvcmos high slew ? appl ies to 1.5 v dc core voltage commercial-case conditions: t j = 70c, worst-case v cc = 1.425 v, worst-case v cci = 1.7 v drive strength speed grade t dout t dp t din t py t pys t eout t zl t zh t lz t hz t zls t zhs units 2 ma std. 0.98 3.53 0.19 1.30 1.63 0. 67 3.59 3.47 2.39 1.23 7.22 7.10 ns 4 ma std. 0.98 2.90 0.19 1.30 1.63 0. 67 2.96 2.65 2.76 2.56 6.59 6.28 ns 6 ma std. 0.98 2.52 0.19 1.30 1.63 0. 67 2.57 2.24 3.01 3.03 6.20 5.87 ns 8 ma std. 0.98 2.45 0.19 1.30 1.63 0. 67 2.49 2.17 3.07 3.17 6.12 5.80 ns 12 ma std. 0.98 2.44 0.19 1.30 1.63 0.67 2.48 2.07 3.15 3.67 6.11 5.70 ns 16 ma std. 0.98 2.44 0.19 1.30 1.63 0. 67 2.48 2.07 3.15 3.67 6.11 5.70 ns notes: 1. software default select ion highlighted in gray. 2. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-6 for derating values.
iglooe dc and switching characteristics advance v0.3 2-37 1.2 v dc core voltage table 2-49 ? 1.8 v lvcmos low slew ? applie s to 1.2 v dc core voltage commercial-case conditions: t j = 70c, worst-case v cc = 1.14 v, worst-case v cci = 1.7 v drive strength speed grade t dout t dp t din t py t pys t eout t zl t zh t lz t hz t zls t zhs units 2 ma std. 1.55 8.20 0.26 1.53 1.95 1. 10 8.35 6.89 2.86 1.68 14.16 12.69 ns 4 ma std. 1.55 6.82 0.26 1.53 1.95 1. 10 6.95 5.88 3.25 3.16 12.75 11.69 ns 6 ma std. 1.55 5.84 0.26 1.53 1.95 1. 10 5.95 5.20 3.51 3.71 11.75 11.00 ns 8 ma std. 1.55 5.51 0.26 1.53 1.95 1. 10 5.61 5.06 3.58 3.87 11.42 10.87 ns 12 ma std. 1.55 5.41 0.26 1.53 1.95 1. 10 5.51 5.07 3.66 4.42 11.32 10.88 ns 16 ma std. 1.55 5.41 0.26 1.53 1.95 1. 10 5.51 5.07 3.66 4.42 11.32 10.88 ns note: for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-6 for derating values. table 2-50 ? 1.8 v lvcmos high slew ? appl ies to 1.2 v dc core voltage commercial-case conditions: t j = 70c, worst-case v cc = 1.14 v, worst-case v cci = 1.7 v drive strength speed grade t dout t dp t din t py t pys t eout t zl t zh t lz t hz t zls t zhs units 2 ma std. 1.55 3.91 0.26 1.53 1.95 1. 10 3.98 3.88 2.85 1.70 9.79 9.68 ns 4 ma std. 1.55 3.24 0.26 1.53 1.95 1. 10 3.30 3.01 3.24 3.25 9.11 8.82 ns 6 ma std. 1.55 2.83 0.26 1.53 1.95 1. 10 2.88 2.58 3.51 3.80 8.69 8.39 ns 8 ma std. 1.55 2.75 0.26 1.53 1.95 1. 10 2.80 2.51 3.57 3.95 8.61 8.31 ns 12 ma std. 1.55 2.74 0.26 1.53 1.95 1.10 2.79 2.41 3.66 4.54 8.60 8.21 ns 16 ma std. 1.55 2.74 0.26 1.53 1.95 1. 10 2.79 2.41 3.66 4.54 8.60 8.21 ns notes: 1. software default select ion highlighted in gray. 2. for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-6 for derating values.
iglooe dc and switching characteristics 2-38 advance v0.3 1.5 v lvcmos (jesd8-11) low-voltage cmos for 1.5 v is an extension of the lvcmos standard (jesd8-5) used for general- purpose 1.5 v applications. it uses a 1.5 v input buffer and a push-pull output buffer. table 2-51 ? minimum and maximum dc input and output levels 1.5 v lvcmos v il v ih v ol v oh i ol i oh i osh i osl i il i ih drive strength min., v max., v min., v max., v max., v min., v ma ma max., ma 1 max., ma 1 a 2 a 2 2 ma ?0.3 0.35 * v cci 0.65 * v cci 1.575 0.25 * v cci 0.75 * v cci 2 2 13 16 10 10 4 ma ?0.3 0.35 * v cci 0.65 * v cci 1.575 0.25 * v cci 0.75 * v cci 4 4 25 33 10 10 6 ma ?0.3 0.35 * v cci 0.65 * v cci 1.575 0.25 * v cci 0.75 * v cci 6 6 32 39 10 10 8 ma ?0.3 0.35 * v cci 0.65 * v cci 1.575 0.25 * v cci 0.75 * v cci 8 8 66 55 10 10 12 ma ?0.3 0.35 * v cci 0.65 * v cci 1.575 0.25 * v cci 0.75 * v cci 12 12 66 55 10 10 notes: 1. currents are measured at 100c junc tion temperature an d maximum voltage. 2. currents are measured at 85c junction temperature. 3. software default selection highlighted in gray. figure 2-10 ? ac loading table 2-52 ? ac waveforms, measuring points, and capacitive loads input low (v) input high (v) measuring point* (v) v ref (typ.) (v) c load (pf) 0 1.5 0.75 ? 5 * measuring point = v trip . see table 2-22 on page 2-22 for a complete table of trip points. test point test point enable path datapath 35 pf r = 1 k r to v cci for t lz /t zl /t zls r to gnd for t hz /t zh /t zhs 35 pf for t zh /t zh s/t zl /t zls 5 pf for t hz /t lz
iglooe dc and switching characteristics advance v0.3 2-39 timing characteristics 1.5 v dc core voltage table 2-53 ? 1.5 v lvcmos low slew ? applie s to 1.5 v dc core voltage commercial-case conditions: t j = 70c, worst-case v cc = 1.425 v, worst-case v cci = 1.4 v drive strength speed grade t dout t dp t din t py t pys t eout t zl t zh t lz t hz t zls t zhs units 2 ma std. 0.98 7.82 0.19 1.50 1.82 0. 67 7.97 6.49 2.89 2.41 11.60 10.12 ns 4 ma std. 0.98 6.72 0.19 1.50 1.82 0. 67 6.84 5.71 3.17 2. 96 10.47 9.34 ns 6 ma std. 0.98 6.32 0.19 1.50 1.82 0. 67 6.44 5.56 3.24 3. 11 10.07 9.19 ns 8 ma std. 0.98 6.24 0.19 1.50 1.82 0. 67 6.36 5.56 3.33 3.66 9.99 9.19 ns 12 ma std. 0.98 6.24 0.19 1.50 1.82 0. 67 6.36 5.56 3.33 3.66 9.99 9.19 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-6 for derating values. table 2-54 ? 1.5 v lvcmos high slew ? appl ies to 1.5 v dc core voltage commercial-case conditions: t j = 70c, worst-case v cc = 1.425 v, worst-case v cci = 1.4 v drive strength speed grade t dout t dp t din t py t pys t eout t zl t zh t lz t hz t zls t zhs units 2 ma std. 0.98 3.34 0.19 1.50 1.82 0. 67 3.41 3.07 2.88 2.50 7.04 6.70 ns 4 ma std. 0.98 2.88 0.19 1.50 1.82 0. 67 2.94 2.57 3.17 3.05 6.57 6.20 ns 6 ma std. 0.98 3.90 0.19 1.50 1.82 0. 67 3.97 3.79 3.17 3.20 7.60 7.42 ns 8 ma std. 0.98 2.77 0.19 1.50 1.82 0. 67 2.82 2.35 3.33 3.78 6.45 5.98 ns 12 ma std. 0.98 2.77 0.19 1.50 1.82 0.67 2.82 2.35 3.33 3.78 6.45 5.98 ns notes: 1. software default select ion highlighted in gray. 2. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-6 for derating values.
iglooe dc and switching characteristics 2-40 advance v0.3 1.2 v dc core voltage table 2-55 ? 1.5 v lvcmos low slew ? applie s to 1.2 v dc core voltage commercial-case conditions: t j = 70c, worst-case v cc = 1.14 v, worst-case v cci = 1.4 v drive strength speed grade t dout t dp t din t py t pys t eout t zl t zh t lz t hz t zls t zhs units 2 ma std. 1.55 8.51 0.26 1.72 2.15 1. 10 8.67 7.05 3.38 3.07 14.48 12.86 ns 4 ma std. 1.55 7.33 0.26 1.72 2.15 1. 10 7.47 6.22 3.69 3.71 13.27 12.03 ns 6 ma std. 1.55 6.90 0.26 1.72 2.15 1. 10 7.03 6.07 3.75 3.88 12.84 11.88 ns 8 ma std. 1.55 6.82 0.26 1.72 2.15 1. 10 6.95 6.07 3.86 4.52 12.75 11.88 ns 12 ma std. 1.55 6.82 0.26 1.72 2.15 1. 10 6.95 6.07 3.86 4.52 12.75 11.88 ns note: for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-6 for derating values. table 2-56 ? 1.5 v lvcmos high slew ? appl ies to 1.2 v dc core voltage commercial-case conditions: t j = 70c, worst-case v cc = 1.14 v, worst-case v cci = 1.4 v drive strength speed grade t dout t dp t din t py t pys t eout t zl t zh t lz t hz t zls t zhs units 2 ma std. 1.55 3.71 0.26 1.72 2.15 1. 10 3.78 3.46 3.37 3.18 9.59 9.26 ns 4 ma std. 1.55 3.22 0.26 1.72 2.15 1. 10 3.28 2.92 3.68 3.81 9.09 8.73 ns 6 ma std. 1.55 4.30 0.26 1.72 2.15 1. 10 4.38 4.21 3.69 4.00 10.19 10.02 ns 8 ma std. 1.55 3.09 0.26 1.72 2.15 1. 10 3.15 2.70 3.85 4.66 8.96 8.51 ns 12 ma std. 1.55 3.09 0.26 1.72 2.15 1.10 3.15 2.70 3.85 4.66 8.96 8.51 ns notes: 1. software default select ion highlighted in gray. 2. for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-6 for derating values.
iglooe dc and switching characteristics advance v0.3 2-41 1.2 v lvcmos (jesd8-12a) low-voltage cmos for 1.2 v comp lies with the lvcmos standard jesd8-12a for general purpose 1.2 v applications. it uses a 1.2 v inpu t buffer and a push-pull output buffer. timing characteristics 1.2 v dc core voltage table 2-57 ? minimum and maximum dc input and output levels applicable to advanced i/o banks 1.2 v lvcmos v il v ih v ol v oh i ol i oh i osh i osl i il i ih drive strength min., v max., v min., v max., v max., v min., v ma ma max., ma 1 max., ma 1 a 2 a 2 2 ma ?0.3 0.35 * v cci 0.65 * v cci 1.26 0.25 * v cci 0.75 * v cci 2 2 tbd tbd 10 10 notes: 1. currents are measured at 100c junc tion temperature an d maximum voltage. 2. currents are measured at 85c junction temperature. 3. software default selection highlighted in gray. figure 2-11 ? ac loading table 2-58 ? ac waveforms, measuring points, and capacitive loads input low (v) input high (v) measuring point* (v) c load (pf) 01.20.65 * measuring point = v trip. see table 2-22 on page 2-22 for a complete table of trip points. test point test point enable path datapath 5 pf r = 1 k r to v cci for t lz /t zl /t zls r to gnd for t hz /t zh /t zhs 35 pf for t zh /t zh s/t zl /t zls 5 pf for t hz /t lz table 2-59 ? 1.2 lvcmos low slew ? applie s to 1.2 v dc core voltage commercial-case conditions: t j = 70c, worst-case v cc = 1.14 v, worst-case v cci = 1.14 v drive strength speed grade t dout t dp t din t py t pys t eout t zl t zh t lz t hz t zls t zhs units 2 ma std. 1.55 9.93 0.26 2.06 2.96 1. 10 9.50 7.45 3.68 4.03 15.10 13.05 ns notes: 1. software default select ion highlighted in gray. 2. for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-6 for derating values. table 2-60 ? 1.2 lvcmos high slew ? applies to 1.2 v dc core voltage commercial-case conditions: t j = 70c, worst-case v cc = 1.14 v, worst-case v cci = 1.14 v drive strength speed grade t dout t dp t din t py t pys t eout t zl t zh t lz t hz t zls t zhs units 2 ma std. 1.55 4.07 0.26 2.06 2.96 1.10 3.90 3.43 3.80 4.02 9.49 9.03 ns notes: 1. software default select ion highlighted in gray. 2. for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-6 for derating values.
iglooe dc and switching characteristics 2-42 advance v0.3 3.3 v pci, 3.3 v pci-x peripheral component interface for 3.3 v standard specifies support for 33 mhz and 66 mhz pci bus applications. ac loadings are defined per the pc i/pci-x specifications for the da tapath; actel loadings for enable path characterization are described in figure 2-12 . ac loadings are defi ned per pci/pci-x specifications for the datapath; actel loading for tristate is described in table 2-62 . table 2-61 ? minimum and maximum dc input and output levels 3.3 v pci/pci-x v il v ih v ol v oh i ol i o h i osh i osl i il i ih drive strength min., v max., v min., v max., v max., v min., v m a m amax., ma 1 max., ma 1 a 2 a 2 per pci specification per pci curves 10 10 notes: 1. currents are measured at 100c junc tion temperature and maximum voltage. 2. currents are measured at 85c junction temperature. figure 2-12 ? ac loading test point enable path r to v for t /t /t cci lz zl zls 10 pf for t /t /t /t zh zhs zls zl 5 pf for t hz /t lz r to gnd for t /t /t hz zh zh s r = 1 k test point datapath r = 25 r to v cci for t dp (f) r to gnd for t dp (r) table 2-62 ? ac waveforms, measuring points, and capacitive loads input low (v) input high (v) measuring point* (v) v ref (typ.) (v) c load (pf) 0 3.3 0.285 * v cci for t dp(r) 0.615 * v cci for t dp(f) ?10 * measuring point = v trip . see table 2-22 on page 2-22 for a complete table of trip points.
iglooe dc and switching characteristics advance v0.3 2-43 timing characteristics 1.5 v dc core voltage 1.2 v dc core voltage table 2-63 ? 3.3 v pci/pci-x ? applies to 1.5 v dc core voltage commercial-case conditions: t j = 70c, worst-case v cc = 1.425 v, worst-case v cci = 3.0 v speed grade t dout t dp t din t py t pys t eout t zl t zh t lz t hz t zls t zhs units std. 0.98 2.44 0.19 0.98 1.45 0.67 2.49 1.84 2.79 3.17 6.12 5.47 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-6 for derating values. table 2-64 ? 3.3 v pci/pci-x ? applies to 1.2 v dc core voltage commercial-case conditions: t j = 70c, worst-case v cc = 1.14 v, worst-case v cci = 3.0 v speed grade t dout t dp t din t py t pys t eout t zl t zh t lz t hz t zls t zhs units std. 1.55 2.74 0.26 1.19 1.63 1.10 2.80 2.16 3.28 3.96 8.60 7.97 ns note: for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-6 for derating values.
iglooe dc and switching characteristics 2-44 advance v0.3 voltage-referenced i/o characteristics 3.3 v gtl gunning transceiver logic is a high-speed bus standard (jesd8-3). it provides a differential amplifier input buffer and an op en-drain output buffer. the v cci pin should be connected to 3.3 v. table 2-65 ? minimum and maximum dc input and output levels 3.3 v gtl v il v ih v ol v oh i ol i oh i osl i osh i il i ih drive strength min., v max., v min., v max., v max., v min., v ma ma max., ma 1 max., ma 1 a 2 a 2 25 ma 3 ?0.3 v ref ? 0.05 v ref + 0.05 3.6 0.4 ? 25 25 268 181 10 10 notes: 1. currents are measured at 100c junc tion temperature an d maximum voltage. 2. currents are measured at 85c junction temperature. 3. output drive strength is below jedec specification. figure 2-13 ? ac loading table 2-66 ? ac waveforms, measuring points, and capacitive loads input low (v) input high (v) measuring point* (v) v ref (typ.) (v) v tt (typ.) (v) c load (pf) v ref ? 0.05 v ref + 0.05 0.8 0.8 1.2 10 * measuring point = v trip . see table 2-22 on page 2-22 for a complete table of trip points. test point 10 pf 25 gtl v tt
iglooe dc and switching characteristics advance v0.3 2-45 timing characteristics 1.5 v dc core voltage 1.2 v dc core voltage table 2-67 ? 3.3 v gtl ? applies to 1.5 v dc core voltage commercial-case conditions: t j = 70c, worst-case v cc = 1.425 v, worst-case v cci = 3.0 v v ref = 0.8 v speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units std. 0.98 1.83 0.19 2.41 0.67 1.84 1.83 5.47 5.46 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-6 for derating values. table 2-68 ? 3.3 v gtl ? applies to 1.2 v dc core voltage commercial-case conditions: t j = 70c, worst-case v cc = 1.14 v, worst-case v cci = 3.0 v v ref = 0.8 v speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units std. 1.55 2.09 0.26 2.75 1.10 2.10 2.09 7.91 7.89 ns note: for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-6 for derating values.
iglooe dc and switching characteristics 2-46 advance v0.3 2.5 v gtl gunning transceiver logic is a high-speed bus standard (jesd8-3). it provides a differential amplifier input buffer and an op en-drain output buffer. the v cci pin should be connected to 2.5 v. table 2-69 ? minimum and maximum dc input and output levels 2.5 gtl v il v ih v ol v oh i ol i oh i osh i osl i il i ih drive strength min., v max., v min., v max., v max., v min., v ma ma max., ma 1 max., ma 1 a 2 a 2 25 ma 3 ?0.3 v ref ? 0.05 v ref + 0.05 3.6 0.4 ? 25 25 169 124 10 10 notes: 1. currents are measured at 100c junc tion temperature an d maximum voltage. 2. currents are measured at 85c junction temperature. 3. output drive strength is below jedec specification. figure 2-14 ? ac loading table 2-70 ? ac waveforms, measuring points, and capacitive loads input low (v) input high (v) measuring point* (v) v ref (typ.) (v) v tt (typ.) (v) c load (pf) v ref ? 0.05 v ref + 0.05 0.8 0.8 1.2 10 * measuring point = v trip . see table 2-22 on page 2-22 for a complete table of trip points. test point 10 pf 25 gtl v tt
iglooe dc and switching characteristics advance v0.3 2-47 timing characteristics 1.5 v dc core voltage 1.2 v dc core voltage table 2-71 ? 2.5 v gtl ? applies to 1.5 v dc core voltage commercial-case conditions: t j = 70c, worst-case v cc = 1.425 v, worst-case v cci = 3.0 v v ref = 0.8 v speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units std. 0.98 1.90 0.19 2.04 0.67 1.94 1.87 5.57 5.50 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-6 for derating values. table 2-72 ? 2.5 v gtl ? applies to 1.2 v dc core voltage commercial-case conditions: t j = 70c, worst-case v cc = 1.14 v, worst-case v cci = 3.0 v v ref = 0.8 v speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units std. 1.55 2.16 0.26 2.35 1.10 2.20 2.13 8.01 7.94 ns note: for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-6 for derating values.
iglooe dc and switching characteristics 2-48 advance v0.3 3.3 v gtl+ gunning transceiver logic plus is a high-speed bu s standard (jesd8-3). it provides a differential amplifier input buffer and an op en-drain output buffer. the v cci pin should be connected to 3.3 v table 2-73 ? minimum and maximum dc input and output levels 3.3 v gtl+ v il v ih v ol v oh i ol i oh i osh i osl i il i ih drive strength min., v max., v min., v max., v max., v min., v ma ma max., ma 1 max., ma 1 a 2 a 2 35 ma ?0.3 v ref ? 0.1 v ref + 0.1 3.6 0.6 ? 35 35 268 181 10 10 notes: 1. currents are measured at 100c junc tion temperature an d maximum voltage. 2. currents are measured at 85c junction temperature. figure 2-15 ? ac loading table 2-74 ? ac waveforms, measuring points, and capacitive loads input low (v) input high (v) measuring point* (v) v ref (typ.) (v) v tt (typ.) (v) c load (pf) v ref ? 0.1 v ref + 0.1 1.0 1.0 1.5 10 * measuring point = v trip . see table 2-22 on page 2-22 for a complete table of trip points. test point 10 pf 25 gtl+ v tt
iglooe dc and switching characteristics advance v0.3 2-49 timing characteristics 1.5 v dc core voltage 1.2 v dc core voltage table 2-75 ? 3.3 v gtl+ ? applies to 1.5 v dc core voltage commercial-case conditions: t j = 70c, worst-case v cc = 1.425 v, worst-case v cci = 3.0 v v ref = 1.0 v speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units std. 0.98 1.85 0.19 1.35 0.67 1.88 1.81 5.51 5.44 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-6 for derating values. table 2-76 ? 3.3 v gtl+ ? applies to 1.2 v dc core voltage commercial-case conditions: t j = 70c, worst-case v cc = 1.14 v, worst-case v cci = 3.0 v v ref = 1.0 v speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units std. 1.55 2.11 0.26 1.61 1.10 2.15 2.07 7.95 7.88 ns note: for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-6 for derating values.
iglooe dc and switching characteristics 2-50 advance v0.3 2.5 v gtl+ gunning transceiver logic plus is a high-speed bu s standard (jesd8-3). it provides a differential amplifier input buffer and an op en-drain output buffer. the v cci pin should be connected to 2.5 v. table 2-77 ? minimum and maximum dc input and output levels 2.5 v gtl+ v il v ih v ol v oh i ol i oh i osh i osl i il i ih drive strength min., v max., v min., v max., v max., v min., v ma ma max., ma 1 max., ma 1 a 2 a 2 33 ma ?0.3 v ref ? 0.1 v ref + 0.1 3.6 0.6 ? 33 33 169 124 10 10 notes: 1. currents are measured at 100c junc tion temperature an d maximum voltage. 2. currents are measured at 85c junction temperature. figure 2-16 ? ac loading table 2-78 ? ac waveforms, measuring points, and capacitive loads input low (v) input high (v) measuring point* (v) v ref (typ.) (v) v tt (typ.) (v) c load (pf) v ref ? 0.1 v ref + 0.1 1.0 1.0 1.5 10 * measuring point = v trip . see table 2-22 on page 2-22 for a complete table of trip points. test point 10 pf 25 gtl+ v tt
iglooe dc and switching characteristics advance v0.3 2-51 timing characteristics 1.5 v dc core voltage 1.2 v dc core voltage table 2-79 ? 2.5 v gtl+ ? applies to 1.5 v dc core voltage commercial-case conditions: t j = 70c, worst-case v cc = 1.425 v, worst-case v cci = 2.3 v v ref = 1.0 v speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units std. 0.98 1.97 0.19 1.29 0.67 2.00 1.84 5.63 5.47 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-6 for derating values. table 2-80 ? 2.5 v gtl+ ? applies to 1.2 v dc core voltage commercial-case conditions: t j = 70c, worst-case v cc = 1.14 v, worst-case v cci = 2.3 v v ref = 1.0 v speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units std. 1.55 2.23 0.26 1.55 1.10 2.28 2.11 8.08 7.91 ns note: for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-6 for derating values.
iglooe dc and switching characteristics 2-52 advance v0.3 hstl class i high-speed transceiver logic is a general-purpos e high-speed 1.5 v bus standard (eia/jesd8-6). iglooe devices support class i. this provides a di fferential amplifier inpu t buffer and a push-pull output buffer. table 2-81 ? minimum and maximum dc input and output levels hstl class i v il v ih v ol v oh i ol i oh i osh i osl i il i ih drive strength min., v max., v min., v max., v max., v min., v ma ma max., ma 1 max., ma 1 a 2 a 2 8 ma ?0.3 v ref ? 0.1 v ref + 0.1 3.6 0.4 v cci ? 0.4 8 8 32 39 10 10 notes: 1. currents are measured at 100c junc tion temperature an d maximum voltage. 2. currents are measured at 85c junction temperature. figure 2-17 ? ac loading table 2-82 ? ac waveforms, measuring points, and capacitive loads input low (v) input high (v) measuring point* (v) v ref (typ.) (v) v tt (typ.) (v) c load (pf) v ref ? 0.1 v ref + 0.10.750.750.75 20 * measuring point = v trip . see table 2-22 on page 2-22 for a complete table of trip points. test point 20 pf 50 hstl class i v tt
iglooe dc and switching characteristics advance v0.3 2-53 timing characteristics 1.5 v dc core voltage 1.2 v dc core voltage table 2-83 ? hstl class i ? applies to 1.5 v dc core voltage commercial-case conditions: t j = 70c, worst-case v cc = 1.425 v, worst-case v cci = 1.4 v v ref = 0.75 v speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units std. 0.98 2.74 0.19 1.77 0.67 2.79 2.73 6.42 6.36 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-6 for derating values. table 2-84 ? hstl class i ? applies to 1.2 v dc core voltage commercial-case conditions: t j = 70c, worst-case v cc = 1.14 v, worst-case v cci = 1.4 v v ref = 0.75 v speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units std. 1.55 3.10 0.26 1.94 1.10 3.12 3.10 8.93 8.91 ns note: for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-6 for derating values.
iglooe dc and switching characteristics 2-54 advance v0.3 hstl class ii high-speed transceiver logic is a general-purpos e high-speed 1.5 v bus standard (eia/jesd8-6). iglooe devices support class ii. this provides a di fferential amplifier input buffer and a push-pull output buffer. table 2-85 ? minimum and maximum dc input and output levels hstl class ii v il v ih v ol v oh i ol i oh i osh i osl i il i ih drive strength min., v max., v min., v max., v max., v min., v ma ma max., ma 1 max., ma 1 a 2 a 2 15 ma 3 ?0.3 v ref ? 0.1 v ref + 0.1 3.6 0.4 v cci ? 0.4 15 15 66 55 10 10 notes: 1. currents are measured at 100c junc tion temperature an d maximum voltage. 2. currents are measured at 85c junction temperature. 3. output drive strength is below jedec specification. figure 2-18 ? ac loading table 2-86 ? ac waveforms, measuring points, and capacitive loads input low (v) input high (v) measuring point* (v) v ref (typ.) (v) v tt (typ.) (v) c load (pf) v ref ? 0.1 v ref + 0.10.750.750.75 20 * measuring point = v trip . see table 2-22 on page 2-22 for a complete table of trip points. test point 20 pf 25 hstl class ii v tt
iglooe dc and switching characteristics advance v0.3 2-55 timing characteristics 1.5 v dc core voltage 1.2 v dc core voltage table 2-87 ? hstl class ii ? applies to 1.5 v dc core voltage commercial-case conditions: t j = 70c, worst-case v cc = 1.425 v, worst-case v cci = 1.4 v v ref = 0.75 v speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units std. 0.98 2.62 0.19 1.77 0.67 2.66 2.40 6.29 6.03 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-6 for derating values. table 2-88 ? hstl class ii ? applies to 1.2 v dc core voltage commercial-case conditions: t j = 70c, worst-case v cc = 1.14 v, worst-case v cci = 1.4 v v ref = 0.75 v speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units std. 1.55 2.93 0.26 1.94 1.10 2.98 2.75 8.79 8.55 ns note: for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-6 for derating values.
iglooe dc and switching characteristics 2-56 advance v0.3 sstl2 class i stub-speed terminated logic for 2.5 v memory bu s standard (jesd8-9). iglooe devices support class i. this provides a differential amplifier input buffer and a push-pull output buffer. table 2-89 ? minimum and maximum dc input and output levels sstl2 class i v il v ih v ol v oh i ol i oh i osh i osl i il i ih drive strength min., v max., v min., v max., v max., v min., v ma ma max., ma 1 max., ma 1 a 2 a 2 15 ma ?0.3 v ref ? 0.2 v ref + 0.2 3.6 0.54 v cci ? 0.62 15 15 83 87 10 10 notes: 1. currents are measured at 100c junc tion temperature an d maximum voltage. 2. currents are measured at 85c junction temperature. figure 2-19 ? ac loading table 2-90 ? ac waveforms, measuring points, and capacitive loads input low (v) input high (v) measuring point* (v) v ref (typ.) (v) v tt (typ.) (v) c load (pf) v ref ? 0.2 v ref + 0.21.251.251.25 30 * measuring point = v trip . see table 2-22 on page 2-22 for a complete table of trip points. test point 30 pf 50 25 sstl2 class i v tt
iglooe dc and switching characteristics advance v0.3 2-57 timing characteristics 1.5 v dc core voltage 1.2 v dc core voltage table 2-91 ? sstl 2 class i ? applies to 1.5 v dc core voltage commercial-case conditions: t j = 70c, worst-case v cc = 1.425 v, worst-case v cci = 2.3 v v ref = 1.25 v speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units std. 0.98 1.91 0.19 1.15 0.67 1.94 1.72 5.57 5.35 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-6 for derating values. table 2-92 ? sstl 2 class i ? applies to 1.2 v dc core voltage commercial-case conditions: t j = 70c, worst-case v cc = 1.14 v, worst-case v cci = 2.3 v v ref = 1.25 v speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units std. 1.55 2.17 0.26 1.39 1.10 2.21 2.04 8.02 7.84 ns note: for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-6 for derating values.
iglooe dc and switching characteristics 2-58 advance v0.3 sstl2 class ii stub-speed terminated logic for 2.5 v memory bu s standard (jesd8-9). iglooe devices support class ii. this provides a differential amplifie r input buffer and a push-pull output buffer. timing characteristics 1.5 v dc core voltage 1.2 v dc core voltage table 2-93 ? minimum and maximum dc input and output levels sstl2 class ii v il v ih v ol v oh i ol i oh i osh i osl i il i ih drive strength min., v max., v min., v max., v max., v min., v ma ma max., ma 1 max., ma 1 a 2 a 2 18 ma ?0.3 v ref ? 0.2 v ref + 0.2 3.6 0.35 v cci ? 0.43 18 18 169 124 10 10 notes: 1. currents are measured at 100c junc tion temperature an d maximum voltage. 2. currents are measured at 85c junction temperature. figure 2-20 ? ac loading table 2-94 ? ac waveforms, measuring points, and capacitive loads input low (v) input high (v) measuring point* (v) v ref (typ.) (v) v tt (typ.) (v) c load (pf) v ref ? 0.2 v ref + 0.21.251.251.25 30 * measuring point = v trip . see table 2-22 on page 2-22 for a complete table of trip points. test point 30 pf 25 25 sstl2 class ii v tt table 2-95 ? sstl 2 class ii ? applies to 1.5 v dc core voltage commercial-case conditions: t j = 70c, worst-case v cc = 1.425 v, worst-case v cci = 2.3 v v ref = 1.25 v speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units std. 0.98 1.94 0.19 1.15 0.67 1.97 1.66 5.60 5.29 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-6 for derating values. table 2-96 ? sstl 2 class ii ? applies to 1.2 v dc core voltage commercial-case conditions: t j = 70c, worst-case v cc = 1.14 v, worst-case v cci = 2.3 v v ref = 1.25 v speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units std. 1.55 2.20 0.26 1.39 1.10 2.24 1.97 8.05 7.78 ns note: for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-6 for derating values.
iglooe dc and switching characteristics advance v0.3 2-59 sstl3 class i stub-speed terminated logic for 3.3 v memory bu s standard (jesd8-8). iglooe devices support class i. this provides a differential amplifier input buffer and a push-pull output buffer. table 2-97 ? minimum and maximum dc input and output levels sstl3 class i v il v ih v ol v oh i ol i oh i osh i osl i il i ih drive strength min., v max., v min., v max., v max., v min., v ma ma max., ma 1 max., ma 1 a 2 a 2 14 ma ?0.3 v ref ? 0.2 v ref + 0.2 3.6 0.7 v cci ? 1.1 14 14 54 51 10 10 notes: 1. currents are measured at 100c junc tion temperature an d maximum voltage. 2. currents are measured at 85c junction temperature. figure 2-21 ? ac loading table 2-98 ? ac waveforms, measuring points, and capacitive loads input low (v) input high (v) measuring point* (v) v ref (typ.) (v) v tt (typ.) (v) c load (pf) v ref ? 0.2 v ref + 0.2 1.5 1.5 1.485 30 * measuring point = v trip . see table 2-22 on page 2-22 for a complete table of trip points. test point 30 pf 50 25 sstl3 class i v tt
iglooe dc and switching characteristics 2-60 advance v0.3 timing characteristics 1.5 v dc core voltage 1.2 v dc core voltage table 2-99 ? sstl 3 class i ? applies to 1.5 v dc core voltage commercial-case conditions: t j = 70c, worst-case v cc = 1.425 v, worst-case v cci = 3.0 v v ref = 1.5 v speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units std. 0.98 2.05 0.19 1.09 0.67 2.09 1.71 5.72 5.34 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-6 for derating values. table 2-100 ? sstl 3 class i ? applies to 1.2 v dc core voltage commercial-case conditions: t j = 70c, worst-case v cc = 1.14 v, worst-case v cci = 3.0 v v ref = 1.5 v speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units std. 1.55 2.32 0.26 1.32 1.10 2.37 2.02 8.17 7.83 ns note: for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-6 for derating values.
iglooe dc and switching characteristics advance v0.3 2-61 sstl3 class ii stub-speed terminated logic for 3.3 v memory bu s standard (jesd8-8). iglooe devices support class ii. this provides a differential amplifie r input buffer and a push-pull output buffer. table 2-101 ? minimum and maximum dc input and output levels sstl3 class ii v il v ih v ol v oh i ol i oh i osh i osl i il i ih drive strength min., v max., v min., v max., v max., v min., v ma ma max., ma 1 max., ma 1 a 2 a 2 21 ma ?0.3 v ref ? 0.2 v ref + 0.2 3.6 0.5 v cci - 0.9 21 21 103 109 10 10 notes: 1. currents are measured at 100c junc tion temperature an d maximum voltage. 2. currents are measured at 85c junction temperature. figure 2-22 ? ac loading table 2-102 ? ac waveforms, measuring points, and capacitive loads input low (v) input high (v) measuring point* (v) v ref (typ.) (v) v tt (typ.) (v) c load (pf) v ref ? 0.2 v ref + 0.2 1.5 1.5 1.485 30 note: measuring point = v trip . see table 2-22 on page 2-22 for a complete table of trip points. test point 30 pf 25 25 sstl3 class ii v tt
iglooe dc and switching characteristics 2-62 advance v0.3 timing characteristics 1.5 v dc core voltage 1.2 v dc core voltage table 2-103 ? sstl 3 class ii ? applies to 1.5 v dc core voltage commercial-case conditions: t j = 70c, worst-case v cc = 1.425 v, worst-case v cci = 3.0 v v ref = 1.5 v speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units std. 0.98 1.86 0.19 1.09 0.67 1.89 1.58 5.52 5.21 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-6 for derating values. table 2-104 ? sstl 3 class ii ? applies to 1.2 v dc core voltage commercial-case conditions: t j = 70c, worst-case v cc = 1.14 v, worst-case v cci = 3.0 v v ref = 1.5 v speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units std. 1.55 2.12 0.26 1.32 1.10 2.16 1.89 7.97 7.70 ns note: for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-6 for derating values.
iglooe dc and switching characteristics advance v0.3 2-63 differential i/o characteristics physical implementation configuration of the i/o modules as a differential pair is handled by the actel designer software when the user instantiates a diff erential i/o macro in the design. differential i/os can also be used in conjunction with the embedded input register (inreg), output register (outreg), enable register (enreg), and ddr. however, there is no support for bidirectional i/os or trista tes with the lvpecl standards. lvds low-voltage differential signaling (ansi/tia/eia-644 ) is a high-speed, differential i/o standard. it requires that one data bit be carried through tw o signal lines, so two pi ns are needed. it also requires external resistor termination. the full implementation of the lvds transmitt er and receiver is shown in an example in figure 2-23 . the building blocks of the lvds transmitte r-receiver are one transmitter macro, one receiver macro, three board resistors at the transm itter end, and one resistor at the receiver end. the values for the three driv er resistors are different from those used in the lvpecl implementation because the output sta ndard specifications are different. along with lvds i/o, iglooe al so supports bus lvds structure and multipoint lvds (m-lvds) configuration (up to 40 nodes). figure 2-23 ? lvds circuit diagram and board-level implementation 140 100 z 0 = 50 z 0 = 50 165 165 + ? p n p n inbuf_lvds outbuf_lvds fpga fpga bourns part number: cat16-lv4f12
iglooe dc and switching characteristics 2-64 advance v0.3 timing characteristics 1.5 v dc core voltage 1.2 v dc core voltage table 2-105 ? minimum and maximum dc input and output levels dc parameter description min. typ. max. units v cci supply voltage 2.375 2.5 2.625 v v ol output low voltage 0.9 1.075 1.25 v v oh output high voltage 1.25 1.425 1.6 v i ol 4 output lower current 0.65 0.91 1.16 ma i oh 4 output high curre nt 0.65 0.91 1.16 ma v i input voltage 0 2.925 v i ih 3 input high leakage current 10 a i il 3 input low leakage current 10 a v odiff differential output voltage 250 350 450 mv v ocm output common-mode voltag e 1.125 1.25 1.375 v v icm input common-mode volt age 0.05 1.25 2.35 v v idiff input differen tial voltage 100 350 mv notes: 1. 5% 2. differential input voltage = 350 mv 3. currents are measured at 85c junction temperature. 4. i ol /i oh is defined by v odiff /(resistor network). table 2-106 ? ac waveforms, measuring points, and capacitive loads input low (v) input high (v) measuring point* (v) v ref (typ.) (v) 1.075 1.325 cross point ? * measuring point = v trip . see table 2-22 on page 2-22 for a complete table of trip points. table 2-107 ? lvds ? applies to 1.5 v dc core voltage commercial-case conditions: t j = 70c, worst-case v cc = 1.425 v, worst-case v cci = 2.3 v speed grade t dout t dp t din t py units std. 0.98 1.77 0.19 1.62 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-6 for derating values. table 2-108 ? lvds ? applies to 1.2 v dc core voltage commercial-case conditions: t j = 70c, worst-case v cc = 1.14 v, worst-case v cci = 2.3 v speed grade t dout t dp t din t py units std. 1.55 2.19 0.26 1.88 ns note: for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-6 for derating values.
iglooe dc and switching characteristics advance v0.3 2-65 b-lvds/m-lvds bus lvds (b-lvds) and multipoint lvds (m-lvds) specifications extend th e existing lvds standard to high-performance mult ipoint bus applications. multidrop and multipoint bus configurations may contain any combination of drivers, receivers, and transceivers. actel lvds drivers provide the higher drive current required by b-lvds and m- lvds to accommodate th e loading. the drivers require series terminations for better signal qua lity and to control voltage swing. termination is also required at both ends of the bus since the driver can be located anywhere on the bus. these configurations can be implemented using the tribuf_lvds and bibuf_lvds macros along with appropriate terminations. multipoint designs usin g actel lvds macros can achieve up to 200 mhz with a maximum of 20 loads. a sa mple application is given in figure 2-24 . the input and output buffer delays are availabl e in the lvds section in table 2-107 on page 2-64 and table 2-108 on page 2-64 . example: for a bus consisting of 20 equidistant loads, the following te rminations provide the required differential volt age, in worst-case industrial operating conditions, at the farthest receiver: r s =60 and r t =70 , given z 0 =50 (2") and z stub =50 (~1.5"). lvpecl low-voltage positive emitter-coupled logic (lvpecl) is another differential i/o standard. it requires that one data bit be carried through two signal lines. like lvds, two pins are needed. it also requires external resistor termination. the full implementation of the lvds transmitt er and receiver is shown in an example in figure 2-25 . the building blocks of the lvpecl transmitt er-receiver are one tra nsmitter macro, one receiver macro, three board resistors at the transm itter end, and one resistor at the receiver end. the values for the three driver resistors are diff erent from those used in the lvds implementation because the output standard specifications are different. figure 2-24 ? b-lvds/m-lvds multipoint appl ication using lvds i/o buffers ... r t r t bibuf_lvds r + - t + - r + - t + - d + - en en en en en receiver transceiver receiver transceiver driver r s r s r s r s r s r s r s r s r s r s z stub z stub z stub z stub z stub z stub z stub z stub z 0 z 0 z 0 z 0 z 0 z 0 z 0 z 0 z 0 z 0 z 0 z 0 figure 2-25 ? lvpecl circuit diagram and board-level implementation 187 w 100 z 0 = 50 z 0 = 50 100 100 + ? p n p n inbuf_lvpecl outbuf_lvpecl fpga fpga bourns part number: cat16-pc4f12
iglooe dc and switching characteristics 2-66 advance v0.3 timing characteristics 1.5 v dc core voltage 1.2 v dc core voltage table 2-109 ? minimum and maximum dc input and output levels dc parameter description min. max. min. max. min. max. units v cci supply voltage 3.0 3.3 3.6 v v ol output low voltage 0.96 1.27 1.06 1.43 1.30 1.57 v v oh output high voltage 1.8 2.11 1.92 2.28 2.13 2.41 v v il , v ih input low, input high voltages 0 3.3 0 3.6 0 3.9 v v odiff differential output voltage 0.625 0.97 0.625 0.97 0.625 0.97 v v ocm output common-mode voltage 1.762 1.98 1.762 1.98 1.762 1.98 v v icm input common-mode voltage 1.01 2.57 1.01 2.57 1.01 2.57 v v idiff input differential voltag e 300 300 300 mv table 2-110 ? ac waveforms, measuring points, and capacitive loads input low (v) input high (v) measuring point* (v) v ref (typ.) (v) 1.64 1.94 cross point ? * measuring point = v trip . see table 2-22 on page 2-22 for a complete table of trip points. table 2-111 ? lvpecl ? applies to 1.5 v dc core voltage commercial-case conditions: t j = 70c, worst-case v cc = 1.425 v, worst-case v cci = 3.0 v speed grade t dout t dp t din t py units std. 0.98 1.75 0.19 1.45 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-6 for derating values. table 2-112 ? lvpecl ? applies to 1.2 v dc core voltage commercial-case conditions: t j = 70c, worst-case v cc = 1.14 v, worst-case v cci = 3.0 v speed grade t dout t dp t din t py units std. 1.55 2.16 0.26 1.70 ns note: for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-6 for derating values.
iglooe dc and switching characteristics advance v0.3 2-67 i/o register specifications fully registered i/o buffers with s ynchronous enable an d asynchronous preset figure 2-26 ? timing model of registered i/ o buffers with synchronous en able and asynchronous preset inbuf inbuf inbuf tribuf clkbuf inbuf inbuf clkbuf data input i/o register with: active high enable active high preset positive-edge triggered data output register and enable output register with: active high enable active high preset postive-edge triggered pad out clk enable preset data_out data eout dout enable clk dq dfn1e1p1 pre dq dfn1e1p1 pre dq dfn1e1p1 pre d_enable a b c d e e e e f g h i j l k y core array
iglooe dc and switching characteristics 2-68 advance v0.3 table 2-113 ? parameter definition and measuring nodes parameter name parameter definition measuring nodes (from, to)* t oclkq clock-to-q of the output data register h, dout t osud data setup time for the output data register f, h t ohd data hold time for the output data register f, h t osue enable setup time for the output data register g, h t ohe enable hold time for the output data register g, h t opre2q asynchronous preset-to-q of th e output data register l, dout t orempre asynchronous preset removal time for the output data register l, h t orecpre asynchronous preset recovery time for the output data register l, h t oeclkq clock-to-q of the output enable register h, eout t oesud data setup time for the output enable register j, h t oehd data hold time for the ou tput enable register j, h t oesue enable setup time for the ou tput enable register k, h t oehe enable hold time for the output enable register k, h t oepre2q asynchronous preset-to-q of th e output enable register i, eout t oerempre asynchronous preset removal time fo r the output enable register i, h t oerecpre asynchronous preset recovery time for the output enab le register i, h t iclkq clock-to-q of the input data register a, e t isud data setup time for the input data register c, a t ihd data hold time for the input data register c, a t isue enable setup time for the input data register b, a t ihe enable hold time for the input data register b, a t ipre2q asynchronous preset-to-q of the input data register d, e t irempre asynchronous preset removal time for the input data register d, a t irecpre asynchronous preset recovery time for the input data register d, a * see figure 2-26 on page 2-67 for more information.
iglooe dc and switching characteristics advance v0.3 2-69 fully registered i/o buffers with s ynchronous enable an d asynchronous clear figure 2-27 ? timing model of the registered i/o buffers with synchronous enable and asynchronous clear enab le clk pad out clk enable clr data_out data y aa eout dout core array dq dfn1e1c1 e clr dq dfn1e1c1 e clr dq dfn1e1c1 e clr d_enable bb cc dd ee ff gg ll hh jj kk clkbuf inbuf inbuf trib uf inbuf inbuf clkbuf inbuf data input i/o register with active high enable active high clear positive-edge triggered data output register and enable output register with active high enable active high clear positive-edge triggered
iglooe dc and switching characteristics 2-70 advance v0.3 table 2-114 ? parameter definition and measuring nodes parameter name parameter definition measuring nodes (from, to)* t oclkq clock-to-q of the output data register hh, dout t osud data setup time for the output data register ff, hh t ohd data hold time for the output data register ff, hh t osue enable setup time for the output data register gg, hh t ohe enable hold time for the output data register gg, hh t oclr2q asynchronous clear-to-q of the output data register ll, dout t oremclr asynchronous clear removal time fo r the output data register ll, hh t orecclr asynchronous clear reco very time for the output data register ll, hh t oeclkq clock-to-q of the output enable register hh, eout t oesud data setup time for the ou tput enable register jj, hh t oehd data hold time for the output enable register jj, hh t oesue enable setup time for the ou tput enable register kk, hh t oehe enable hold time for the ou tput enable register kk, hh t oeclr2q asynchronous clear-to-q of the output enable register ii, eout t oeremclr asynchronous clear removal time fo r the output enab le register ii, hh t oerecclr asynchronous clear recove ry time for the output enable register ii, hh t iclkq clock-to-q of the input data register aa, ee t isud data setup time for the input data register cc, aa t ihd data hold time for the input data register cc, aa t isue enable setup time for the input data register bb, aa t ihe enable hold time for the input data register bb, aa t iclr2q asynchronous clear-to-q of the input data register dd, ee t iremclr asynchronous clear removal time for the input data register dd, aa t irecclr asynchronous clear reco very time for the inpu t data register dd, aa * see figure 2-27 on page 2-69 for more information.
iglooe dc and switching characteristics advance v0.3 2-71 input register timing characteristics 1.5 v dc core voltage figure 2-28 ? input register timing diagram 50% preset clear out_1 clk data enable t isue 50% 50% t isud t ihd 50% 50% t iclkq 1 0 t ihe t irecpre t irempre t irecclr t iremclr t iwclr t iwpre t ipre2q t iclr2q t ickmpwh t ickmpwl 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% table 2-115 ? input data register propagation delays commercial-case conditions: t j = 70c, worst-case v cc = 1.425 v parameter description std. units t iclkq clock-to-q of the input data register 0.42 ns t isud data setup time for the input data register 0.47 ns t ihd data hold time for the input data register 0.00 ns t isue enable setup time for the input data register 0.67 ns t ihe enable hold time for the input data register 0.00 ns t iclr2q asynchronous clear-to-q of the input data register 0.79 ns t ipre2q asynchronous preset-to-q of th e input data register 0.79 ns t iremclr asynchronous clear removal time for the input data register 0.00 ns t irecclr asynchronous clear recovery time for the input data register 0.24 ns t irempre asynchronous preset removal time for the input data register 0.00 ns t irecpre asynchronous preset recovery time for the input data register 0.24 ns t iwclr asynchronous clear minimum pulse widt h for the input data register 0.19 ns t iwpre asynchronous preset minimum pulse wi dth for the input data register 0.19 ns t ickmpwh clock minimum pulse width high fo r the input data register 0.31 ns t ickmpwl clock minimum pulse width low fo r the input data register 0.28 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-6 for derating values.
iglooe dc and switching characteristics 2-72 advance v0.3 1.2 v dc core voltage table 2-116 ? input data register propagation delays commercial-case conditions: t j = 70c, worst-case v cc = 1.14 v parameter description std. units t iclkq clock-to-q of the inpu t data register 0.68 ns t isud data setup time for the input data register 0.97 ns t ihd data hold time for the input data register 0.00 ns t isue enable setup time for the input data register 1.02 ns t ihe enable hold time for the input data register 0.00 ns t iclr2q asynchronous clear-to-q of the input data register 1.19 ns t ipre2q asynchronous preset-to-q of the input data register 1.19 ns t iremclr asynchronous clear removal time for the input data register 0.00 ns t irecclr asynchronous clear recovery time for the input data register 0.24 ns t irempre asynchronous preset removal time for the input data register 0.00 ns t irecpre asynchronous preset recovery time for the input data register 0.24 ns t iwclr asynchronous clear minimum pulse widt h for the input data register 0.19 ns t iwpre asynchronous preset minimum pulse wi dth for the input data register 0.19 ns t ickmpwh clock minimum pulse width high fo r the input data register 0.31 ns t ickmpwl clock minimum pulse width low fo r the input data register 0.28 ns note: for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-6 for derating values.
iglooe dc and switching characteristics advance v0.3 2-73 output register timing characteristics 1.5 v dc core voltage figure 2-29 ? output register timing diagram preset clear dout clk data_out enable t osue 50% 50% t osud t ohd 50% 50% t oclkq 1 0 t ohe t orecpre t orempre t orecclr t oremclr t owclr t owpre t opre2q t oclr2q t ockmpwh t ockmpwl 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% table 2-117 ? output data register propagation delays commercial-case conditions: t j = 70c, worst-case v cc = 1.425 v parameter description std. units t oclkq clock-to-q of the output data register 1.00 ns t osud data setup time for the output data register 0.51 ns t ohd data hold time for the output data register 0.00 ns t osue enable setup time for the output data register 0.70 ns t ohe enable hold time for the output data register 0.00 ns t oclr2q asynchronous clear-to-q of the output data register 1.34 ns t opre2q asynchronous preset-to-q of th e output data register 1.34 ns t oremclr asynchronous clear removal time fo r the output data register 0.00 ns t orecclr asynchronous clear reco very time for the output data register 0.24 ns t orempre asynchronous preset removal time for the output data register 0.00 ns t orecpre asynchronous preset recovery time for the output data register 0.24 ns t owclr asynchronous clear minimu m pulse width for the output data register 0.19 ns t owpre asynchronous preset mini mum pulse width for the output data register 0.19 ns t ockmpwh clock minimum pulse width high for the output data register 0.31 ns t ockmpwl clock minimum pulse width low for the output data register 0.28 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-6 for derating values.
iglooe dc and switching characteristics 2-74 advance v0.3 1.2 v dc core voltage table 2-118 ? output data register propagation delays commercial-case conditions: t j = 70c, worst-case v cc = 1.14 v parameter description std. units t oclkq clock-to-q of the output data register 1.52 ns t osud data setup time for the output data register 1.15 ns t ohd data hold time for the output data register 0.00 ns t osue enable setup time for the output data register 1.11 ns t ohe enable hold time for the output data register 0.00 ns t oclr2q asynchronous clear-to-q of the output data register 1.96 ns t opre2q asynchronous preset-to-q of th e output data register 1.96 ns t oremclr asynchronous clear removal time fo r the output data register 0.00 ns t orecclr asynchronous clear reco very time for the output data register 0.24 ns t orempre asynchronous preset removal time for the output data register 0.00 ns t orecpre asynchronous preset recovery time for the output data register 0.24 ns t owclr asynchronous clear minimu m pulse width for the output data register 0.19 ns t owpre asynchronous preset mini mum pulse width for the output data register 0.19 ns t ockmpwh clock minimum pulse width high for the output data register 0.31 ns t ockmpwl clock minimum pulse width low for the output data register 0.28 ns note: for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-6 for derating values.
iglooe dc and switching characteristics advance v0.3 2-75 output enable register timing characteristics 1.5 v dc core voltage figure 2-30 ? output enable regist er timing diagram 50% preset clear eout clk d_enable enable t oesue 50% 50% t oesud t oehd 50% 50% t oeclkq 1 0 t oehe t oerecpre t oerempre t oerecclr t oeremclr t oewclr t oewpre t oepre2q t oeclr2q t oeckmpwh t oeckmpwl 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% table 2-119 ? output enable register propagation delays commercial-case conditions: t j = 70c, worst-case v cc = 1.425 v parameter description std. units t oeclkq clock-to-q of th e output enable register 0.75 ns t oesud data setup time for the output enable register 0.51 ns t oehd data hold time for the ou tput enable register 0.00 ns t oesue enable setup time for the ou tput enable register 0.73 ns t oehe enable hold time for the output enable register 0.00 ns t oeclr2q asynchronous clear-to-q of the output enable register 1.13 ns t oepre2q asynchronous preset-to-q of th e output enable register 1.13 ns t oeremclr asynchronous clear removal time for the output enable register 0.00 ns t oerecclr asynchronous clear recovery time fo r the output enable register 0.24 ns t oerempre asynchronous preset removal time fo r the output enab le register 0.00 ns t oerecpre asynchronous preset recovery time for the output enab le register 0.24 ns t oewclr asynchronous clear minimum pulse width for the output enable register 0.19 ns t oewpre asynchronous preset minimum pulse widt h for the output enable register 0.19 ns t oeckmpwh clock minimum pulse width high for the output enable register 0.31 ns t oeckmpwl clock minimum pulse width low for the output enable register 0.28 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-6 for derating values.
iglooe dc and switching characteristics 2-76 advance v0.3 1.2 v dc core voltage table 2-120 ? output enable register propagation delays commercial-case conditions: t j = 70c, worst-case v cc = 1.14 v parameter description std. units t oeclkq clock-to-q of th e output enable register 1.10 ns t oesud data setup time for the output enable register 1.15 ns t oehd data hold time for the ou tput enable register 0.00 ns t oesue enable setup time for the ou tput enable register 1.22 ns t oehe enable hold time for the output enable register 0.00 ns t oeclr2q asynchronous clear-to-q of the output enable register 1.65 ns t oepre2q asynchronous preset-to-q of th e output enable register 1.65 ns t oeremclr asynchronous clear removal time for the output enable register 0.00 ns t oerecclr asynchronous clear recovery time fo r the output enable register 0.24 ns t oerempre asynchronous preset removal time fo r the output enab le register 0.00 ns t oerecpre asynchronous preset recovery time for the output enab le register 0.24 ns t oewclr asynchronous clear minimum pulse width for the output enable register 0.19 ns t oewpre asynchronous preset minimum pulse widt h for the output enable register 0.19 ns t oeckmpwh clock minimum pulse width high for the output enable register 0.31 ns t oeckmpwl clock minimum pulse width low for the output enable register 0.28 ns note: for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-6 for derating values.
iglooe dc and switching characteristics advance v0.3 2-77 ddr module specifications input ddr module figure 2-31 ? input ddr timing model table 2-121 ? parameter definitions parameter name parameter definition measuring nodes (from, to) t ddriclkq1 clock-to-out out_qr b, d t ddriclkq2 clock-to-out out_qf b, e t ddrisud data setup time of ddr input a, b t ddrihd data hold time of ddr input a, b t ddriclr2q1 clear-to-out out_qr c, d t ddriclr2q2 clear-to-out out_qf c, e t ddriremclr clear removal c, b t ddrirecclr clear recovery c, b input ddr data clk clkbuf inbuf out_qf (to core) ff2 ff1 inbuf clr ddr_in e a b c d out_qr (to core)
iglooe dc and switching characteristics 2-78 advance v0.3 timing characteristics 1.5 v dc core voltage figure 2-32 ? input ddr timing diagram t ddriclr2q2 t ddriremclr t ddrirecclr t ddriclr2q1 12 3 4 5 6 7 8 9 clk data clr out_qr out_qf t ddriclkq1 2 4 6 3 5 7 t ddrihd t ddrisud t ddriclkq2 table 2-122 ? input ddr propagation delays commercial-case conditions: t j = 70c, worst-case v cc = 1.425 v parameter description std. units t ddriclkq1 clock-to-out out_qr for input ddr 0.48 ns t ddriclkq2 clock-to-out out_qf for input ddr 0.65 ns t ddrisud1 data setup for input ddr (negedge) 0.50 ns t ddrisud2 data setup for input ddr (posedge) 0.40 ns t ddrihd1 data hold for input ddr (negedge) 0.00 ns t ddrihd2 data hold for input ddr (posedge) 0.00 ns t ddriclr2q1 asynchronous clear to out out_qr for input ddr 0.82 ns t ddriclr2q2 asynchronous clear-to-out out_qf for input ddr 0.98 ns t ddriremclr asynchronous clear removal time for input ddr 0.00 ns t ddrirecclr asynchronous clear recovery time for input ddr 0.23 ns t ddriwclr asynchronous clear minimum pulse width for input ddr 0.19 ns t ddrickmpwh clock minimum pulse width high for input ddr 0.31 ns t ddrickmpwl clock minimum pulse width low for input ddr 0.28 ns f ddrimax maximum frequency for input ddr mhz note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-6 for derating values.
iglooe dc and switching characteristics advance v0.3 2-79 1.2 v dc core voltage table 2-123 ? input ddr propagation delays commercial-case conditions: t j = 70c, worst-case v cc = 1.14 v parameter description std. units t ddriclkq1 clock-to-out out_qr for input ddr 0.76 ns t ddriclkq2 clock-to-out out_qf for input ddr 0.94 ns t ddrisud1 data setup for input ddr (negedge) 0.93 ns t ddrisud2 data setup for input ddr (posedge) 0.84 ns t ddrihd1 data hold for input ddr (negedge) 0.00 ns t ddrihd2 data hold for input ddr (posedge) 0.00 ns t ddriclr2q1 asynchronous clear to out out_qr for input ddr 1.23 ns t ddriclr2q2 asynchronous clear-to-out out_qf for input ddr 1.42 ns t ddriremclr asynchronous clear removal time for input ddr 0.00 ns t ddrirecclr asynchronous clear recovery time for input ddr 0.24 ns t ddriwclr asynchronous clear minimum pulse width for input ddr 0.19 ns t ddrickmpwh clock minimum pulse width high for input ddr 0.31 ns t ddrickmpwl clock minimum pulse width low for input ddr 0.28 ns f ddrimax maximum frequency for input ddr mhz note: for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-6 for derating values.
iglooe dc and switching characteristics 2-80 advance v0.3 output ddr module figure 2-33 ? output ddr timing model table 2-124 ? parameter definitions parameter name parameter definition measuring nodes (from, to) t ddroclkq clock-to-out b, e t ddroclr2q asynchronous clear-to-out c, e t ddroremclr clear removal c, b t ddrorecclr clear recovery c, b t ddrosud1 data setup data_f a, b t ddrosud2 data setup data_r d, b t ddrohd1 data hold data_f a, b t ddrohd2 data hold data_r d, b data_f (from core) clk clkbuf out ff2 inbuf clr ddr_out output ddr ff1 0 1 x x x x x x x x a b d e c c b outbuf data_r (from core)
iglooe dc and switching characteristics advance v0.3 2-81 figure 2-34 ? output ddr timing diagram 11 6 1 7 2 8 3 910 45 28 3 9 t ddroremclr t ddrohd1 t ddroremclr t ddrohd2 t ddrosud2 t ddroclkq t ddrorecclr clk data_r data_f clr out t ddroclr2q 710 4
iglooe dc and switching characteristics 2-82 advance v0.3 timing characteristics 1.5 v dc core voltage 1.2 v dc core voltage table 2-125 ? output ddr propagation delays commercial-case conditions: t j = 70c, worst-case v cc = 1.425 v parameter description std. units t ddroclkq clock-to-out of ddr for output ddr 1.07 ns t ddrosud1 data_f data setup for output ddr 0.67 ns t ddrosud2 data_r data setup for output ddr 0.67 ns t ddrohd1 data_f data hold for output ddr 0.00 ns t ddrohd2 data_r data hold for output ddr 0.00 ns t ddroclr2q asynchronous clear-to-ou t for output ddr 1.38 ns t ddroremclr asynchronous clear removal time for output ddr 0.00 ns t ddrorecclr asynchronous clear recovery time for output ddr 0.23 ns t ddrowclr1 asynchronous clear minimum pu lse width for output ddr 0.19 ns t ddrockmpwh clock minimum pulse width high for the output ddr 0.31 ns t ddrockmpwl clock minimum pulse width lo w for the output ddr 0.28 ns f ddomax maximum frequency for the output ddr mhz note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-6 for derating values. table 2-126 ? output ddr propagation delays commercial-case conditions: t j = 70c, worst-case v cc =1.14v parameter description std. units t ddroclkq clock-to-out of ddr for output ddr 1.60 ns t ddrosud1 data_f data setup for output ddr 1.09 ns t ddrosud2 data_r data setup for output ddr 1.16 ns t ddrohd1 data_f data hold for output ddr 0.00 ns t ddrohd2 data_r data hold for output ddr 0.00 ns t ddroclr2q asynchronous clear-to-ou t for output ddr 1.99 ns t ddroremclr asynchronous clear removal time for output ddr 0.00 ns t ddrorecclr asynchronous clear recovery time for output ddr 0.24 ns t ddrowclr1 asynchronous clear minimum pu lse width for output ddr 0.19 ns t ddrockmpwh clock minimum pulse width high for the output ddr 0.31 ns t ddrockmpwl clock minimum pulse width low for the output ddr 0.28 ns f ddomax maximum frequency for the output ddr mhz note: for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-6 for derating values.
iglooe dc and switching characteristics advance v0.3 2-83 versatile characteristics versatile specifications as a combinatorial module the iglooe library offers all combinations of lut-3 combinatorial functions. in this section, timing characteristics are presented for a sample of the library. for more details, refer to the igloo, fusion, and proasic3 macro library guide . figure 2-35 ? sample of combinatorial cells maj3 a c by mux2 b 0 1 a s y ay b b a xor2 y nor2 b a y b a y or2 inv a y and2 b a y nand3 b a c xor3 y b a c nand2
iglooe dc and switching characteristics 2-84 advance v0.3 figure 2-36 ? timing model and waveforms net a y b len g th = 1 versatile net a y b len g th = 1 versatile net a y b len g th = 1 versatile net a y b len g th = 1 versatile nand2 or any c om b inatorial lo g i c nand2 or any c om b inatorial lo g i c nand2 or any c om b inatorial lo g i c nand2 or any c om b inatorial lo g i c t pd = max(t pd(rr) , t pd(rf) , t pd(ff) , t pd(fr) ) where e dg es are appli c a b le for a parti c ular c om b inatorial c ell fanout = 4 t pd t pd t pd 50 % v cc v cc v cc 50 % g nd a, b, c 50 % 50 % 50 % (rr) (rf) g nd out out g nd 50 % (ff) (fr) t pd t pd
iglooe dc and switching characteristics advance v0.3 2-85 timing characteristics 1.5 v dc core voltage 1.2 v dc core voltage table 2-127 ? combinatorial cell propagation delays commercial-case conditions: t j = 70c, worst-case v cc = 1.425 v combinatorial cell equation parameter std. units inv y = !a t pd 0.80 ns and2 y = a b t pd 0.84 ns nand2 y = !(a b) t pd 0.90 ns or2 y = a + b t pd 1.19 ns nor2 y = !(a + b) t pd 1.10 ns xor2 y = a bt pd 1.37 ns maj3 y = maj(a , b, c) t pd 1.33 ns xor3 y = a b ct pd 1.79 ns mux2 y = a !s + b s t pd 1.48 ns and3 y = a b c t pd 1.21 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-6 for derating values. table 2-128 ? combinatorial cell propagation delays commercial-case conditions: t j = 70c, worst-case v cc = 1.425 v combinatorial cell equation parameter std. units inv y = !a t pd 1.35 ns and2 y = a b t pd 1.42 ns nand2 y = !(a b) t pd 1.58 ns or2 y = a + b t pd 2.10 ns nor2 y = !(a + b) t pd 1.94 ns xor2 y = a bt pd 2.33 ns maj3 y = maj(a , b, c) t pd 2.34 ns xor3 y = a b ct pd 3.05 ns mux2 y = a !s + b s t pd 2.64 ns and3 y = a b c t pd 2.10 ns note: for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-6 for derating values.
iglooe dc and switching characteristics 2-86 advance v0.3 versatile specifications as a sequential module the iglooe library offers a wide variety of sequen tial cells, including flip-flops and latches. each has a data input and optional enable, clear, or pres et. in this section, ti ming characteristics are presented for a representative sample from the library. for more details, refer to the igloo, fusion, and proasic3 macro library guide . figure 2-37 ? sample of sequential cells dq dfn1 data clk out d q dfn1c1 data clk out clr dq dfi1e1p1 data clk out en pre d q dfn1e1 data clk out en
iglooe dc and switching characteristics advance v0.3 2-87 timing characteristics 1.5 v dc core voltage figure 2-38 ? timing model and waveforms pre clr out clk data en t sue 50% 50% t sud t hd 50% 50% t clkq 0 t he t recpre t rempre t recclr t remclr t wclr t wpre t pre2q t clr2q t ckmpwh t ckmpwl 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% table 2-129 ? register delays commercial-case conditions: t j = 70c, worst-case v cc = 1.425 v parameter description std. units t clkq clock-to-q of the core register 0.89 ns t sud data setup time for the core register 0.81 ns t hd data hold time for the core register 0.00 ns t sue enable setup time for the core register 0.73 ns t he enable hold time for the core register 0.00 ns t clr2q asynchronous clear-to-q of the core register 0.60 ns t pre2q asynchronous preset-to-q of the core register 0.62 ns t remclr asynchronous clear removal time for the core register 0.00 ns t recclr asynchronous clear recovery ti me for the core register 0.24 ns t rempre asynchronous preset removal ti me for the core register 0.00 ns t recpre asynchronous preset recovery ti me for the core register 0.23 ns t wclr asynchronous clear mini mum pulse width for the core register 0.30 ns t wpre asynchronous preset minimum pulse width for the core register 0.30 ns t ckmpwh clock minimum pulse width high for the core register 0.56 ns t ckmpwl clock minimum pulse width low for the core register 0.56 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-6 for derating values.
iglooe dc and switching characteristics 2-88 advance v0.3 1.2 v dc core voltage table 2-130 ? register delays commercial-case conditions: t j = 70c, worst-case v cc = 1.14 v parameter description std. units t clkq clock-to-q of the core register 1.61 ns t sud data setup time for the core register 1.17 ns t hd data hold time for the core register 0.00 ns t sue enable setup time for the core register 1.29 ns t he enable hold time for the core register 0.00 ns t clr2q asynchronous clear-to-q of the core register 0.87 ns t pre2q asynchronous preset-to-q of the core register 0.89 ns t remclr asynchronous clear removal time for the core register 0.00 ns t recclr asynchronous clear recovery ti me for the core register 0.24 ns t rempre asynchronous preset removal ti me for the core register 0.00 ns t recpre asynchronous preset recovery ti me for the core register 0.24 ns t wclr asynchronous clear mini mum pulse width for the core register 0.46 ns t wpre asynchronous preset minimum pulse width for the core register 0.46 ns t ckmpwh clock minimum pulse width high for the core register 0.95 ns t ckmpwl clock minimum pulse width low for the core register 0.95 ns note: for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-6 for derating values.
iglooe dc and switching characteristics advance v0.3 2-89 global resource characteristics agle600 clock tree topology clock delays are device-specific. figure 2-39 is an example of a global tree used for clock routing. the global tree presented in figure 2-39 is driven by a ccc located on the west side of the agle600 device. it is used to drive al l d-flip-flops in the device. figure 2-39 ? example of global tree use in an agle600 device for clock routing central global rib versatile rows global spine ccc
iglooe dc and switching characteristics 2-90 advance v0.3 global tree timing characteristics global clock delays include the central rib delay, the spine delay, and the row delay. delays do not include i/o input buffer clock delays, as these are i/o standard?dependent, and the clock may be driven and conditioned internally by the ccc module. for more details on clock conditioning capabilities, refer to the "clock conditioning circuits" section on page 2-92 . table 2-131 and table 2-133 present minimum and maximum global cloc k delays within the device. minimum and maximum delays are measured wi th minimum and maximum loading. timing characteristics 1.5 v dc core voltage table 2-131 ? agle600 global resource commercial-case conditions: t j = 70c, v cc = 1.425 v parameter description std. units min. 1 max. 2 t rckl input low delay for global clock 1.48 1.82 ns t rckh input high delay for global clock 1.52 1.94 ns t rckmpwh minimum pulse width high for global clock ns t rckmpwl minimum pulse width low for global clock ns t rcksw maximum skew for global clock 0.42 ns f rmax maximum frequency fo r global clock mhz notes: 1. value reflects minimum load . the delay is measured from the ccc ou tput to the clock pin of a sequential element, located in a lightly loaded row (sin gle element is connected to the global net). 2. value reflects maximum load . the delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-f lops are connected to th e global net in the row). 3. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-6 for derating values. table 2-132 ? agle3000 global resource commercial-case conditions: t j = 70c, v cc = 1.425 v parameter description std. units min. 1 max. 2 t rckl input low delay for global clock 2.00 2.34 ns t rckh input high delay for global clock 2.09 2.51 ns t rckmpwh minimum pulse width high for global clock ns t rckmpwl minimum pulse width low for global clock ns t rcksw maximum skew for global clock 0.42 ns f rmax maximum frequency fo r global clock mhz notes: 1. value reflects minimum load . the delay is measured from the ccc ou tput to the clock pin of a sequential element, located in a lightly loaded row (sin gle element is connected to the global net). 2. value reflects maximum load . the delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-f lops are connected to th e global net in the row). 3. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-6 for derating values.
iglooe dc and switching characteristics advance v0.3 2-91 1.2 v dc core voltage table 2-133 ? agle600 global resource commercial-case conditions: t j = 70c, v cc = 1.14 v parameter description std. units min. 1 max. 2 t rckl input low delay for global clock 2.22 2.67 ns t rckh input high delay for global clock 2.32 2.93 ns t rckmpwh minimum pulse width high for global clock ns t rckmpwl minimum pulse width low for global clock ns t rcksw maximum skew for global clock 0.61 ns f rmax maximum frequency fo r global clock mhz notes: 1. value reflects minimum load . the delay is measured from the ccc ou tput to the clock pin of a sequential element, located in a lightly loaded row (sin gle element is connected to the global net). 2. value reflects maximum load . the delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-f lops are connected to th e global net in the row). 3. for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-6 for derating values. table 2-134 ? agle3000 global resource commercial-case conditions: t j = 70c, v cc = 1.14 v parameter description std. units min. 1 max. 2 t rckl input low delay for global clock 2.83 3.27 ns t rckh input high delay for global clock 3.00 3.61 ns t rckmpwh minimum pulse width high for global clock ns t rckmpwl minimum pulse width low for global clock ns t rcksw maximum skew for global clock 0.61 ns f rmax maximum frequency fo r global clock mhz notes: 1. value reflects minimum load . the delay is measured from the ccc ou tput to the clock pin of a sequential element, located in a lightly loaded row (sin gle element is connected to the global net). 2. value reflects maximum load . the delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-f lops are connected to th e global net in the row). 3. for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-6 for derating values.
iglooe dc and switching characteristics 2-92 advance v0.3 clock conditioning circuits ccc electrical specifications timing characteristics table 2-135 ? iglooe ccc/pll specification for iglooe v2 or v5 devices, 1.5 v dc core supply voltage parameter min. typ. max. units clock conditioning circuitry input frequency f in_ccc 1.5 250 mhz clock conditioning circuitry output frequency f out_ccc 0.75 250 mhz serial clock (sclk) for dynamic pll 3 100 ps delay increments in programmable delay blocks 1, 2 360 number of programmable values in each programmable delay block 32 ns input cycle-to-cycle jitte r (peak magnitude) 1 ccc output peak-to-p eak period jitter f ccc_out max peak-to-peak period jitter 1 global network used external fb used 3 global networks used 0.75 mhz to 24 mhz 0.50% 0.75% 0.70% 24 mhz to 100 mhz 1.00% 1.50% 1.20% 100 mhz to 250 mhz 2.50% 3.75% 2.75% acquisition time lockcontrol = 0 300 s lockcontrol = 1 6.0 ms tracking jitter lockcontrol = 0 2.5 ns lockcontrol = 1 1.5 ns output duty cycle 48.5 51.5 % delay range in block: programmable delay 1 1, 2, 4 1.25 15.65 ns delay range in block: programmable delay 2 1, 2, 4 0.025 15.65 ns delay range in block: fixed delay 1, 2 3.5 ns notes: 1. this delay is a function of voltage and temperature. see table 2-6 on page 2-6 and table 2-7 on page 2-6 for deratings. 2. t j = 25c, v cc = 1.5 v 3. maximum value obtained fo r a std. speed grade device in worst case commercial conditions.for specific junction temperature and volt age supply levels, refer to table 2-6 on page 2-6 for derating values. 4. for definitions of type 1 and type 2, refer to the pll bl ock diagram in the clock conditioning circuits in igloo and proa sic3 devices chapter of the handbook. 5. tracking jitter is defined as the variation in clock edge position of pll outputs with reference to the pll input clock edge. tracking jitter does not measure th e variation in pll output pe riod, which is covered by the period jitter parameter.
iglooe dc and switching characteristics advance v0.3 2-93 table 2-136 ? iglooe ccc/pll specification for iglooe v2 devices, 1. 2 v dc core supply voltage parameter min. typ. max. units clock conditioning circuitry input frequency f in_ccc 1.5 160 mhz clock conditioning circuitry output frequency f out_ccc 0.75 160 mhz serial clock (sclk) for dynamic pll 4 60 ps delay increments in programmable delay blocks 1, 2 580 ps number of programmable values in each programmable delay block 32 input cycle-to-cycle jitter (peak magnitude) 0.25 ns ccc output peak-to-p eak period jitter f ccc_out max peak-to-peak period jitter 1 global network used external fb used 3 global networks used 0.75 mhz to 24 mhz 0.50% 0.75% 0.70% 24 mhz to 100 mhz 1.00% 1.50% 1.20% 100 mhz to 160 mhz 2.50% 3.75% 2.75% acquisition time lockcontrol = 0 300 s lockcontrol = 1 6.0 ms tracking jitter lockcontrol = 0 4 ns lockcontrol = 1 3 ns output duty cycle 48.5 51.5 % delay range in block: programmable delay 1 1, 2 2.3 20.86 ns delay range in block: programmable delay 2 1, 2 0.025 20.86 ns delay range in block: fixed delay 1, 2 5.7 ns notes: 1. this delay is a function of voltage and te mperature. see table 2-6 on page 2-6 and table 2-7 on page 2-6 for deratings. 2. t j = 25c, v cc = 1.5 v 3. tracking jitter is defined as the va riation in clock edge position of pll outputs with reference to pll input clock edge. tracking jitter does not measure the variation in pll output period, which is covered by period jitter parameter. note: peak-to-peak jitter measurements are defined by t peak-to-peak = t period_max ? t period_min . figure 2-40 ? peak-to-peak jitter definition t perio d _max t perio d _min output s i g nal
iglooe dc and switching characteristics 2-94 advance v0.3 embedded sram and fifo characteristics sram figure 2-41 ? ram models addra11 douta8 douta7 douta0 doutb8 doutb7 doutb0 addra10 addra0 dina8 dina7 dina0 widtha1 widtha0 pipea wmodea blka wena clka addrb11 addrb10 addrb0 dinb8 dinb7 dinb0 widthb1 widthb0 pipeb wmodeb blkb wenb clkb ram4k9 raddr8 rd17 raddr7 rd16 raddr0 rd0 wd17 wd16 wd0 ww1 ww0 rw1 rw0 pipe ren rclk ram512x18 waddr8 waddr7 waddr0 wen wclk reset reset
iglooe dc and switching characteristics advance v0.3 2-95 timing waveforms figure 2-42 ? ram read for pass-through output figure 2-43 ? ram read for pipelined output clk add blk_b wen_b do a 0 a 1 a 2 d 0 d 1 d 2 t cyc t ckh t ckl t as t ah t bks t ens t enh t doh1 t bkh d n t ckq1 clk add blk_b wen_b do a 0 a 1 a 2 d 0 d 1 t cyc t ckh t ckl t as t ah t bks t ens t enh t doh2 t ckq2 t bkh d n
iglooe dc and switching characteristics 2-96 advance v0.3 figure 2-44 ? ram write, output retained (wmode = 0) figure 2-45 ? ram write, output as write data (wmode = 1) t cyc t ckh t ckl a 0 a 1 a 2 di 0 di 1 t as t ah t bks t ens t enh t ds t dh clk blk_b wen_b add di d n do t bkh d 2 t cyc t ckh t ckl a 0 a 1 a 2 di 0 di 1 t as t ah t bks t ens t ds t dh clk blk_b wen_b add di t bkh do (pass-through) di 1 d n di 0 do (pipelined) di 0 di 1 d n di 2
iglooe dc and switching characteristics advance v0.3 2-97 figure 2-46 ? write access after write onto same address c lk1 c lk2 wen_b1 wen_b2 add1 add2 di1 di2 do2 (pass-throu g h) do2 (pipeline d ) a 0 t ah t a s t ah t a s t dh t cc kh t d s t c kq1 t c kq2 d 1 a 1 d 2 a 3 d 3 a 0 d 0 d n d 0 d n d 0 a 0 a 4 d 4
iglooe dc and switching characteristics 2-98 advance v0.3 figure 2-47 ? read access after write onto same address c lk1 c lk2 wen_b1 wen_b2 add1 add2 di1 do2 (pass-throu g h) do2 (pipeline d ) a 0 t ah t a s t ah t a s t dh t d s t wro t c kq1 t c kq2 d 0 a 0 a 1 a 4 d n d n d 0 d 0 d 1 a 2 d 2 a 3 d 3
iglooe dc and switching characteristics advance v0.3 2-99 figure 2-48 ? write access after read onto same address figure 2-49 ? ram reset a 0 a 1 a 0 a 0 a 1 a 3 d 1 d 2 d 3 t ah t a s t ah t a s t c kq1 t c kq1 t c kq2 t cc kh c lk1 add1 wen_b1 do1 (pass-throu g h) do1 (pipeline d ) c lk2 add2 di2 wen_b2 d n d n d 0 d 1 d 0 clk reset_b do d n t cyc t ckh t ckl t rstbq d m
iglooe dc and switching characteristics 2-100 advance v0.3 timing characteristics applies to 1.5 v dc core voltage table 2-137 ? ram4k9 commercial-case conditions: t j = 70c, worst-case v cc = 1.425 v parameter description std. units t as address setup time 0.83 ns t ah address hold time 0.16 ns t ens ren_b, wen_b setup time 0.81 ns t enh ren_b, wen_b hold time 0.16 ns t bks blk_b setup time 1.65 ns t bkh blk_b hold time 0.16 ns t ds input data (di) setup time 0.71 ns t dh input data (di) hold time 0.36 ns t ckq1 clock high to new data valid on do (output retained, wmode = 0) 3.53 ns clock high to new data valid on do (pass-through, wmode = 1) 3.06 ns t ckq2 clock high to new data vali d on do (pipelined) 1.81 ns t wro address collision clk-to-clk delay fo r reliable read access after write on same address tbd ns t cckh address collision clk-to-clk delay for reliable write access after write/read on same address tbd ns t rstbq reset_b low to data out low on do (pass-through) 2.06 ns reset_b low to data out low on do (pipelined) 2.06 ns t remrstb reset_b removal 0.61 ns t recrstb reset_b recovery 3.21 ns t mpwrstb reset_b minimum pulse width 0.68 ns t cyc clock cycle time 6.24 ns f max maximum frequency 160 mhz note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-6 for derating values.
iglooe dc and switching characteristics advance v0.3 2-101 table 2-138 ? ram512x18 commercial-case conditions: t j = 70c, worst-case v cc = 1.425 v parameter description std. units t as address setup time 0.83 ns t ah address hold time 0.16 ns t ens ren_b, wen_b setup time 0.73 ns t enh reb_b, wen_b hold time 0.08 ns t ds input data (di) setup time 0.71 ns t dh input data (di) hold time 0.36 ns t ckq1 clock high to new data valid on do (output retained, wmode = 0) 4.21 ns t ckq2 clock high to new data valid on do (pipelined) 1.71 ns t wro address collision clk-to-clk delay fo r reliable read access after write on same address tbd ns t cckh address collision clk-to-clk dela y for reliable write access after write/read on same address tbd ns t rstbq reset_b low to data out low on do (pass-through) 2.06 ns reset_b low to data out low on do (pipelined) 2.06 ns t remrstb reset_b removal 0.61 ns t recrstb reset_b recovery 3.21 ns t mpwrstb reset_b minimum pulse width 0.68 ns t cyc clock cycle time 6.24 ns f max maximum frequency 160 mhz note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-6 for derating values.
iglooe dc and switching characteristics 2-102 advance v0.3 applies to 1.2 v dc core voltage table 2-139 ? ram4k9 commercial-case conditions: t j = 70c, worst-case v cc = 1.14 v parameter description std. units t as address setup time 1.53 ns t ah address hold time 0.29 ns t ens ren_b, wen_b setup time 1.50 ns t enh ren_b, wen_b hold time 0.29 ns t bks blk_b setup time 3.05 ns t bkh blk_b hold time 0.29 ns t ds input data (di) setup time 1.33 ns t dh input data (di) hold time 0.66 ns t ckq1 clock high to new data valid on do (output retained, wmode = 0) 6.61 ns clock high to new data valid on do (pass-through, wmode = 1) 5.72 ns t ckq2 clock high to new data vali d on do (pipelined) 3.38 ns t wro address collision clk-to-clk delay fo r reliable read access after write on same address tbd ns t cckh address collision clk-to-clk dela y for reliable write access after write/read on same address tbd ns t rstbq reset_b low to data out low on do (pass-through) 3.86 ns reset_b low to data out low on do (pipelined) 3.86 ns t remrstb reset_b removal 1.12 ns t recrstb reset_b recovery 5.93 ns t mpwrstb reset_b minimum pulse width 1.18 ns t cyc clock cycle time 10.90 ns f max maximum frequency 92 mhz note: for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-6 for derating values.
iglooe dc and switching characteristics advance v0.3 2-103 table 2-140 ? ram512x18 commercial-case conditions: t j = 70c, worst-case v cc = 1.14 v parameter description std. units t as address setup time 1.53 ns t ah address hold time 0.29 ns t ens ren_b, wen_b setup time 1.36 ns t enh reb_b, wen_b hold time 0.15 ns t ds input data (di) setup time 1.33 ns t dh input data (di) hold time 0.66 ns t ckq1 clock high to new data valid on do (output retained, wmode = 0) 7.88 ns t ckq2 clock high to new data valid on do (pipelined) 3.20 ns t wro address collision clk-to-clk delay fo r reliable read access after write on same address tbd ns t cckh address collision clk-to-clk dela y for reliable write access after write/read on same address tbd ns t rstbq reset_b low to data out low on do (pass-through) 3.86 ns reset_b low to data out low on do (pipelined) 3.86 ns t remrstb reset_b removal 1.12 ns t recrstb reset_b recovery 5.93 ns t mpwrstb reset_b minimum pulse width 1.18 ns t cyc clock cycle time 10.90 ns f max maximum frequency 92 mhz note: for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-6 for derating values.
iglooe dc and switching characteristics 2-104 advance v0.3 fifo figure 2-50 ? fifo model fifo4k18 rw2 rd17 rw1 rd16 rw0 ww2 ww1 ww0 rd0 estop fstop full afull empty afval11 aempty afval10 afval0 aeval11 aeval10 aeval0 ren rblk rclk wen wblk wclk rpipe wd17 wd16 wd0 reset
iglooe dc and switching characteristics advance v0.3 2-105 timing waveforms figure 2-51 ? fifo reset figure 2-52 ? fifo empty flag and aempty flag assertion match (a 0 ) t mpwrstb t rstfg t rstck t rstaf rclk/ wclk reset_b empty aempty wa/ra (address counter) t rstfg t rstaf full afull rclk no match no match dist = aef_th match (empty) t ckaf t rckef empty aempty t cyc wa/ra (address counter)
iglooe dc and switching characteristics 2-106 advance v0.3 figure 2-53 ? fifo full flag and afull flag assertion figure 2-54 ? fifo empty flag and ae mpty flag deassertion figure 2-55 ? fifo full flag and afull flag deassertion no match no match dist = aff_th match (full) t ckaf t wckff t cyc wclk full afull wa/ra (address counter) wclk wa/ra (address counter) match (empty) no match no match no match dist = aef_th + 1 no match rclk empty 1st rising edge after 1st write 2nd rising edge after 1st write t rckef t ckaf aempty dist = aff_th ? 1 match (full) no match no match no match no match t wckf t ckaf 1st rising edge after 1st read 1st rising edge after 2nd read rclk wa/ra (address counter) wclk full afull
iglooe dc and switching characteristics advance v0.3 2-107 timing characteristics applies to 1.5 v dc core voltage table 2-141 ? fifo commercial-case conditions: t j = 70c, v cc = 1.425 v parameter description std. units t ens ren_b, wen_b setup time 1.99 ns t enh ren_b, wen_b hold time 0.16 ns t bks blk_b setup time 0.30 ns t bkh blk_b hold time 0.00 ns t ds input data (di) setup time 0.76 ns t dh input data (di) hold time 0.25 ns t ckq1 clock high to new data valid on do (pass-through) 3.33 ns t ckq2 clock high to new data vali d on do (pipelined) 1.80 ns t rckef rclk high to empty flag valid 3.53 ns t wckff wclk high to full flag valid 3.35 ns t ckaf clock high to almost empty/ full flag valid 12.85 ns t rstfg reset_b low to empty/fu ll flag valid 3.48 ns t rstaf reset_b low to almost empty/full flag valid 12.72 ns t rstbq reset_b low to data out low on do (pass-through) 2.02 ns reset_b low to data out lo w on do (pipelined) 2.02 ns t remrstb reset_b removal 0.61 ns t recrstb reset_b recovery 3.21 ns t mpwrstb reset_b minimum pulse width 0.68 ns t cyc clock cycle time 6.24 ns f max maximum frequency 160 mhz note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-6 for derating values.
iglooe dc and switching characteristics 2-108 advance v0.3 applies to 1.2 v dc core voltage table 2-142 ? fifo commercial-case conditions: t j = 70c, v cc = 1.14 v parameter description std. units t ens ren_b, wen_b setup time 4.13 ns t enh ren_b, wen_b hold time 0.31 ns t bks blk_b setup time 0.47 ns t bkh blk_b hold time 0.00 ns t ds input data (di) setup time 1.56 ns t dh input data (di) hold time 0.49 ns t ckq1 clock high to new data valid on do (pass-through) 6.80 ns t ckq2 clock high to new data vali d on do (pipelined) 3.62 ns t rckef rclk high to empty flag valid 7.23 ns t wckff wclk high to full flag valid 6.85 ns t ckaf clock high to almost empty/ full flag valid 26.61 ns t rstfg reset_b low to empty/fu ll flag valid 7.12 ns t rstaf reset_b low to almost empty/full flag valid 26.33 ns t rstbq reset_b low to data out low on do (pass-through) 4.09 ns reset_b low to data out lo w on do (pipelined) 4.09 ns t remrstb reset_b removal 1.23 ns t recrstb reset_b recovery 6.58 ns t mpwrstb reset_b minimum pulse width 1.18 ns t cyc clock cycle time 10.90 ns f max maximum frequency 92 mhz note: for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-6 for derating values.
iglooe dc and switching characteristics advance v0.3 2-109 embedded flashrom characteristics timing characteristics applies to 1.5 v dc core voltage applies to 1.2 v dc core voltage figure 2-56 ? timing diagram a 0 a 1 t s u t hold t s u t hold t s u t hold t c kq2 t c kq2 t c kq2 c lk a dd ress data d 0 d 0 d 1 table 2-143 ? embedded flashrom access time commercial-case conditions: t j = 70c, v cc = 1.425 v parameter description std. units t su address setup time 0.58 ns t hold address hold time 0.00 ns t ck2q clock-to-out 34.14 ns f max maximum clock frequency 15 mhz table 2-144 ? embedded flashrom access time commercial-case conditions: t j = 70c, v cc = 1.14 v parameter description std. units t su address setup time 0.59 ns t hold address hold time 0.00 ns t ck2q clock-to-out 52.90 ns f max maximum clock frequency 10 mhz
iglooe dc and switching characteristics 2-110 advance v0.3 jtag 1532 characteristics jtag timing delays do not include jtag i/os. to obtain complete jtag timing, add i/o buffer delays to the corresponding standard selected; refer to the i/o timing characteristics in the "user i/o characteristics" section on page 2-16 for more details. timing characteristics applies to 1.2 v dc core voltage applies to 1.5 v dc core voltage table 2-145 ? jtag 1532 commercial-case conditions: t j = 70c, v cc = 1.14 v parameter description std. units t disu test data input setup time 1.50 ns t dihd test data input hold time 3.00 ns t tmssu test mode select setup time 1.50 ns t tmdhd test mode select hold time 3.00 ns t tck2q clock to q (data out) 11.00 ns t rstb2q reset to q (data out) 30.00 ns f tckmax tck maximum frequency 9.00 mhz t trstrem resetb removal time 1.18 ns t trstrec resetb recovery time 0.00 ns t trstmpw resetb minimum pulse tbd ns note: for specific junction temperature and voltage supply levels, refer to table 2-7 on page 2-6 for derating values. table 2-146 ? jtag 1532 commercial-case conditions: t j = 70c, v cc = 1.425 v parameter description std. units t disu test data input setup time 1.00 ns t dihd test data input hold time 2.00 ns t tmssu test mode select setup time 1.00 ns t tmdhd test mode select hold time 2.00 ns t tck2q clock to q (data out) 8.00 ns t rstb2q reset to q (data out) 25.00 ns f tckmax tck maximum frequency 15.00 mhz t trstrem resetb removal time 0.58 ns t trstrec resetb recovery time 0.00 ns t trstmpw resetb minimum pulse tbd ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-6 for derating values.
iglooe dc and switching characteristics advance v0.3 2-111 part number and revision date part number 51700096-002-2 revised july 2008 list of changes the following table lists critical changes that we re made in the current version of the chapter. previous version changes in curr ent version (advance v0.3) page advance v0.2 (june 2008) as a result of the libero ide v8.4 re lease, actel now offers a wide range of core voltage support. the document was updated to change 1.2 v / 1.5 v to 1.2 v to 1.5 v. 2-2 advance v0.1 (january 2008) tables have been updated to reflect default values in the software. the default i/o capacitance is 5 pf. tables have been updated to include the lvcmos 1.2 v i/o set. ddr tables have two additional data points added to reflect both edges for input ddr setup and hold time. the power data table has been updated to match smartpower data rather then simulation values. n/a table 2-1 absolute maximum ratings was updated to add vmv to the v cci parameter row and remove the wo rd "output" from the parameter description for v cci . table note 3 was added. 2-1 table 2-2 recommended operating conditions 4 was updated to include the t j parameter. table note 9 is new. 2-2 in table 2-3 flash programming limits ? retention, storage, and operating temperature1 , the maximum operating juncti on temperature was changed from 110 to 100. 2-2 vmv was removed from table 2-4 overshoot and undershoot limits 1 . the title of the table was revised to remo ve "as measured on quiet i/os." table note 2 was revised to remove "estimate d sso density over cycles." table note 3 was deleted. 2-3 the "pll behavior at brownout condition" section is new. 2-4 figure 2-2 v2 devices ? i/o state as a function of v cci and v cc voltage levels is new. 2-5 eq 2-2 was updated. the temperature was changed to 100c, and therefore the end result changed. 2-6 the table notes for table 2-8 quiescent supply current (i dd ), iglooe flash*freeze mode* , table 2-9 quiescent supply current (i dd ), iglooe sleep mode (vcc = 0 v)* , and table 2-10 quiescent supply current (idd), iglooe shutdown mode (vcc, vcci = 0 v)* were updated to remove vmv and include p dc6 and p dc7 . v cci and v jtag were removed from the statement about i dd in the table note for table 2-9 quiescent supply current (i dd ), iglooe sleep mode (vcc = 0 v)* . 2-7 note 2 of table2-11quiescent supply cu rrent, no iglooe flash*freeze mode* was updated to include v ccpll . note 4 was updated to include p dc6 and p dc7 . 2-8 table note 3 was added to table 2-12 summary of i/o input buffer power (per pin) ? default i/o software settings and referenced for 1.2 v lvcmos. 2-9
iglooe dc and switching characteristics 2-112 advance v0.3 advance v0.1 (continued) table 2-13 summary of i/o output buff er power (per pin) ? default i/o software settings1 was updated to change p dc3 to p dc7 . the table notes were updated to reflect that power was measured on v cci. table note 4 is new. 2-10 table 2-15 different components cont ributing to the static power consumption in igloo devices and table 2-17 different components contributing to the static power consumption in igloo devices were updated to add p dc6 and p dc7 , and to change the definition for p dc5 to bank quiescent power. 2-11 , 2-12 a table subtitle was added for table 2-17 different components contributing to the static power consumption in igloo devices 2-12 the "total static power consumption?p stat " section was updated to revise the calculation of p stat , including p dc6 and p dc7 . 2-13 footnote 1 was updated to includ e information about p ac13 . the pll contribution equation was changed from: p pll = p ac13 + p ac14 * f clkout to p pll = p dc4 + p ac13 * f clkout . 2-14 the "timing model" was updated to be consistent with the revised timing numbers. 2-16 in table 2-21 summary of maximum and minimum dc input levels , t j was changed to t a in notes 1 and 2. 2-21 table 2-31 schmitt trigger input hysteresis was updated to included a hysteresis value for 1.2 v lv cmos (schmitt trigger mode). 2-28 all ac loading figures fo r single-ended i/o standards were changed from datapaths at 35 pf to 5 pf. n/a the "1.2 v lvcmos (jesd8-12a)" section is new. 2-41 advance v0.4 (december 2007) this document was previously in datasheet advance v0.4. as a result of moving to the handbook format, actel has restarted the version numbers. the new version number is advance v0.1. n/a advance v0.3 (september 2007) table 2-4 ? iglooe ccc/pll specification and table 2-5 ? iglooe ccc/pll specification were updated. 2-18, 2-19 the "during flash*freeze mode" sectio n was updated to include information about the output of the i/o to the fpga core . 2-60 figure 2-38 ? flash*freeze mode type 1 ? timing diagram was updated to modify the lsicc signal. 2-56 table 2-32 ? flash*freeze pin location in iglooe family packages (device- independent) was updated for the fg896 package. 2-64 figure 2-40 ? flash*freeze mode type 2 ? timing diagram was updated to modify the lsicc signal. 2-58 information regarding calculation of the quiescent supply current was added to the "quiescent supply current" section. 3-6 table 3-8 ? quiescent supply current (i dd), iglooe flash*freeze mode? was updated. 3-6 table 3-9 ? quiescent supply current (i dd), iglooe sleep mode (vcc = 0 v)? was updated. 3-6 table 3-11 ? quiescent supply current, no iglooe flash* freeze mode1 was updated. 3-6 previous version changes in curr ent version (advance v0.3) page
iglooe dc and switching characteristics advance v0.3 2-113 actel safety critical, life support, and high-reliability applications policy the actel products described in this advance st atus datasheet may not have completed actel?s qualification process. actel may amend or enhance products during the product introduction and qualification process, resulting in changes in device functional ity or performance. it is the responsibility of each customer to ensure the fitn ess of any actel product (but especially a new product) for a particular purpose, including appr opriateness for safety-cri tical, life-s upport, and other high-reliability applicatio ns. consult actel?s terms and cond itions for specific liability exclusions relating to life-support applications. a reliabilit y report covering all of actel?s products is available on the actel website at http://www.actel.com/documents/ort_report.pdf . actel also offers a variety of enhanced qualification and lot acceptance screening procedures. contact your local actel sales office for addi tional reliability information. advance v0.3 (continued) table 3-99 ? minimum and maximum dc input and output levels was updated. 3-51 table 3-136 ? jtag 1532 and table 3-135 ? jtag 1532 were updated. 3-95 advance v0.1 the t j parameter in table 3-2 ? recommended operating conditions was changed to t a , ambient temperature, and table notes 6?8 were added. 3-2 previous version changes in curr ent version (advance v0.3) page

v1.1 3-1 igloo ? e packaging 3 ? package pin assignments 256-pin fbga note for package manufacturing and environmental information, visit the resource center at http://www.actel.com/products/ solutions/pac kage/docs.aspx . note: this is the bottom view of the package. 1 3 5 7 9 11 13 15 2 4 6 8 10 12 14 16 c e g j l n r d f h k m p t b a a1 ball pad corner
package pin assignments 3-2 v1.1 256-pin fbga pin number agle600 function a1 gnd a2 gaa0/io00ndb0v0 a3 gaa1/io00pdb0v0 a4 gab0/io01ndb0v0 a5 io05pdb0v0 a6 io10pdb0v1 a7 io12pdb0v2 a8 io16ndb0v2 a9 io23ndb1v0 a10 io23pdb1v0 a11 io28ndb1v1 a12 io28pdb1v1 a13 gbb1/io34pdb1v1 a14 gba0/io35ndb1v1 a15 gba1/io35pdb1v1 a16 gnd b1 gab2/io133pdb7v1 b2 gaa2/io134pdb7v 1 b3 gndq b4 gab1/io01pdb0v0 b5 io05ndb0v0 b6 io10ndb0v1 b7 io12ndb0v2 b8 io16pdb0v2 b9 io20ndb1v0 b10 io24ndb1v0 b11 io24pdb1v0 b12 gbc1/io33pdb1v1 b13 gbb0/io34ndb1v1 b14 gndq b15 gba2/io36pdb2v0 b16 io42ndb2v0 c1 io133ndb7v1 c2 io134ndb7v1 c3 vmv7 c4 v ccpla c5 gac0/io02ndb0v0 c6 gac1/io02pdb0v0 c7 io15ndb0v2 c8 io15pdb0v2 c9 io20pdb1v0 c10 io25ndb1v0 c11 io27pdb1v0 c12 gbc0/io33ndb1v1 c13 v ccplb c14 vmv2 c15 io36ndb2v0 c16 io42pdb2v0 d1 io128pdb7v1 d2 io129pdb7v1 d3 gac2/io132pdb7v1 d4 v compla d5 gndq d6 io09ndb0v1 d7 io09pdb0v1 d8 io13pdb0v2 d9 io21pdb1v0 d10 io25pdb1v0 d11 io27ndb1v0 d12 gndq d13 v complb d14 gbb2/io37pdb2v0 d15 io39pdb2v0 d16 io39ndb2v0 e1 io128ndb7v1 e2 io129ndb7v1 e3 io132ndb7v1 e4 io130pdb7v1 e5 vmv0 e6 v cci b0 e7 v cci b0 256-pin fbga pin number agle600 function e8 io13ndb0v2 e9 io21ndb1v0 e10 v cci b1 e11 v cci b1 e12 vmv1 e13 gbc2/io38pdb2v0 e14 io37ndb2v0 e15 io41ndb2v0 e16 io41pdb2v0 f1 io124pdb7v0 f2 io125pdb7v0 f3 io126pdb7v0 f4 io130ndb7v1 f5 v cci b7 f6 gnd f7 v cc f8 v cc f9 v cc f10 v cc f11 gnd f12 v cci b2 f13 io38ndb2v0 f14 io40ndb2v0 f15 io40pdb2v0 f16 io45psb2v1 g1 io124ndb7v0 g2 io125ndb7v0 g3 io126ndb7v0 g4 gfc1/io120ppb7v0 g5 v cci b7 g6 v cc g7 gnd g8 gnd g9 gnd g10 gnd g11 v cc 256-pin fbga pin number agle600 function
iglooe packaging v1.1 3-3 g12 v cci b2 g13 gcc1/io50ppb2v1 g14 io44ndb2v1 g15 io44pdb2v1 g16 io49nsb2v1 h1 gfb0/io119npb7v0 h2 gfa0/io118ndb6v1 h3 gfb1/io119ppb7v0 h4 v complf h5 gfc0/io120npb7v0 h6 v cc h7 gnd h8 gnd h9 gnd h10 gnd h11 v cc h12 gcc0/io50npb2v1 h13 gcb1/io51ppb2v1 h14 gca0/io52npb3v0 h15 v complc h16 gcb0/io51npb2v1 j1 gfa2/io117psb6v1 j2 gfa1/io118pdb6v1 j3 v ccplf j4 io116ndb6v1 j5 gfb2/io116pdb6v1 j6 v cc j7 gnd j8 gnd j9 gnd j10 gnd j11 v cc j12 gcb2/io54ppb3v0 j13 gca1/io52ppb3v0 j14 gcc2/io55ppb3v0 j15 v ccplc 256-pin fbga pin number agle600 function j16 gca2/io53psb3v0 k1 gfc2/io115psb6v1 k2 io113ppb6v1 k3 io112pdb6v1 k4 io112ndb6v1 k5 v cci b6 k6 v cc k7 gnd k8 gnd k9 gnd k10 gnd k11 v cc k12 v cci b3 k13 io54npb3v0 k14 io57npb3v0 k15 io55npb3v0 k16 io57ppb3v0 l1 io113npb6v1 l2 io109ppb6v0 l3 io108pdb6v0 l4 io108ndb6v0 l5 v cci b6 l6 gnd l7 v cc l8 v cc l9 v cc l10 v cc l11 gnd l12 v cci b3 l13 gdb0/io66npb3v1 l14 io60ndb3v1 l15 io60pdb3v1 l16 io61pdb3v1 m1 io109npb6v0 m2 io106ndb6v0 m3 io106pdb6v0 256-pin fbga pin number agle600 function m4 gec0/io104npb6v0 m5 vmv5 m6 v cci b5 m7 v cci b5 m8 io84ndb5v0 m9 io84pdb5v0 m10 v cci b4 m11 v cci b4 m12 vmv3 m13 v ccpld m14 gdb1/io66ppb3v1 m15 gdc1/io65pdb3v1 m16 io61ndb3v1 n1 io105pdb6v0 n2 io105ndb6v0 n3 gec1/io104ppb6v0 n4 v comple n5 gndq n6 gea2/io101ppb5v2 n7 io92ndb5v1 n8 io90ndb5v1 n9 io82ndb5v0 n10 io74ndb4v1 n11 io74pdb4v1 n12 gndq n13 v compld n14 v jtag n15 gdc0/io65ndb3v1 n16 gda1/io67pdb3v1 p1 geb1/io103pdb6v0 p2 geb0/io103ndb6v0 p3 vmv6 p4 v ccple p5 io101npb5v2 p6 io95ppb5v1 p7 io92pdb5v1 256-pin fbga pin number agle600 function
package pin assignments 3-4 v1.1 p8 io90pdb5v1 p9 io82pdb5v0 p10 io76ndb4v1 p11 io76pdb4v1 p12 vmv4 p13 tck p14 v pump p15 trst p16 gda0/io67ndb3v1 r1 gea1/io102pdb6v0 r2 gea0/io102ndb6v 0 r3 gndq r4 gec2/io99pdb5v2 r5 io95npb5v1 r6 io91ndb5v1 r7 io91pdb5v1 r8 io83ndb5v0 r9 io83pdb5v0 r10 io77ndb4v1 r11 io77pdb4v1 r12 io69ndb4v0 r13 gdb2/io69pdb4v0 r14 tdi r15 gndq r16 tdo t1 gnd t2 io100ndb5v2 t3 ff/geb2/io100pdb5 v2 t4 io99ndb5v2 t5 io88ndb5v0 t6 io88pdb5v0 t7 io89nsb5v0 t8 io80nsb4v1 t9 io81ndb4v1 256-pin fbga pin number agle600 function t10 io81pdb4v1 t11 io70ndb4v0 t12 gdc2/io70pdb4v0 t13 io68ndb4v0 t14 gda2/io68pdb4v0 t15 tms t16 gnd 256-pin fbga pin number agle600 function
iglooe packaging v1.1 3-5 484-pin fbga note for package manufacturing and environmental information, visit the resource center at http://www.actel.com/products/ solutions/pac kage/docs.aspx . note: this is the bottom view of the package. a b c d e f g h j k l m n p r t u v w y aa ab 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 a1 ball pad corner
package pin assignments 3-6 v1.1 484-pin fbga pin number agle600 function a1 gnd a2 gnd a3 v cci b0 a4 io06ndb0v1 a5 io06pdb0v1 a6 io08ndb0v1 a7 io08pdb0v1 a8 io11pdb0v1 a9 io17pdb0v2 a10 io18ndb0v2 a11 io18pdb0v2 a12 io22pdb1v0 a13 io26pdb1v0 a14 io29ndb1v1 a15 io29pdb1v1 a16 io31ndb1v1 a17 io31pdb1v1 a18 io32ndb1v1 a19 nc a20 v cci b1 a21 gnd a22 gnd aa1 gnd aa2 v cci b6 aa3 nc aa4 io98pdb5v2 aa5 io96ndb5v2 aa6 io96pdb5v2 aa7 io86ndb5v0 aa8 io86pdb5v0 aa9 io85pdb5v0 aa10 io85ndb5v0 aa11 io78ppb4v1 aa12 io79ndb4v1 aa13 io79pdb4v1 aa14 nc aa15 nc aa16 io71ndb4v0 aa17 io71pdb4v0 aa18 nc aa19 nc aa20 nc aa21 v cci b3 aa22 gnd ab1 gnd ab2 gnd ab3 v cci b5 ab4 io97ndb5v2 ab5 io97pdb5v2 ab6 io93ndb5v1 ab7 io93pdb5v1 ab8 io87ndb5v0 ab9 io87pdb5v0 ab10 nc ab11 nc ab12 io75ndb4v1 ab13 io75pdb4v1 ab14 io72ndb4v0 ab15 io72pdb4v0 ab16 io73ndb4v0 ab17 io73pdb4v0 ab18 nc ab19 nc ab20 v cci b4 ab21 gnd ab22 gnd b1 gnd b2 v cci b7 b3 nc b4 io03ndb0v0 b5 io03pdb0v0 b6 io07ndb0v1 484-pin fbga pin number agle600 function b7 io07pdb0v1 b8 io11ndb0v1 b9 io17ndb0v2 b10 io14pdb0v2 b11 io19pdb0v2 b12 io22ndb1v0 b13 io26ndb1v0 b14 nc b15 nc b16 io30ndb1v1 b17 io30pdb1v1 b18 io32pdb1v1 b19 nc b20 nc b21 v cci b2 b22 gnd c1 v cci b7 c2 nc c3 nc c4 nc c5 gnd c6 io04ndb0v0 c7 io04pdb0v0 c8 v cc c9 v cc c10 io14ndb0v2 c11 io19ndb0v2 c12 nc c13 nc c14 v cc c15 v cc c16 nc c17 nc c18 gnd c19 nc c20 nc 484-pin fbga pin number agle600 function
iglooe packaging v1.1 3-7 c21 nc c22 v cci b2 d1 nc d2 nc d3 nc d4 gnd d5 gaa0/io00ndb0v0 d6 gaa1/io00pdb0v0 d7 gab0/io01ndb0v0 d8 io05pdb0v0 d9 io10pdb0v1 d10 io12pdb0v2 d11 io16ndb0v2 d12 io23ndb1v0 d13 io23pdb1v0 d14 io28ndb1v1 d15 io28pdb1v1 d16 gbb1/io34pdb1v1 d17 gba0/io35ndb1v1 d18 gba1/io35pdb1v1 d19 gnd d20 nc d21 nc d22 nc e1 nc e2 nc e3 gnd e4 gab2/io133pdb7v 1 e5 gaa2/io134pdb7v 1 e6 gndq e7 gab1/io01pdb0v0 e8 io05ndb0v0 e9 io10ndb0v1 e10 io12ndb0v2 484-pin fbga pin number agle600 function e11 io16pdb0v2 e12 io20ndb1v0 e13 io24ndb1v0 e14 io24pdb1v0 e15 gbc1/io33pdb1v1 e16 gbb0/io34ndb1v1 e17 gndq e18 gba2/io36pdb2v0 e19 io42ndb2v0 e20 gnd e21 nc e22 nc f1 nc f2 io131ndb7v1 f3 io131pdb7v1 f4 io133ndb7v1 f5 io134ndb7v1 f6 vmv7 f7 v ccpla f8 gac0/io02ndb0v0 f9 gac1/io02pdb0v0 f10 io15ndb0v2 f11 io15pdb0v2 f12 io20pdb1v0 f13 io25ndb1v0 f14 io27pdb1v0 f15 gbc0/io33ndb1v1 f16 v ccplb f17 vmv2 f18 io36ndb2v0 f19 io42pdb2v0 f20 nc f21 nc f22 nc g1 io127ndb7v1 g2 io127pdb7v1 484-pin fbga pin number agle600 function g3 nc g4 io128pdb7v1 g5 io129pdb7v1 g6 gac2/io132pdb7v 1 g7 v compla g8 gndq g9 io09ndb0v1 g10 io09pdb0v1 g11 io13pdb0v2 g12 io21pdb1v0 g13 io25pdb1v0 g14 io27ndb1v0 g15 gndq g16 v complb g17 gbb2/io37pdb2v0 g18 io39pdb2v0 g19 io39ndb2v0 g20 io43pdb2v0 g21 io43ndb2v0 g22 nc h1 nc h2 nc h3 v cc h4 io128ndb7v1 h5 io129ndb7v1 h6 io132ndb7v1 h7 io130pdb7v1 h8 vmv0 h9 v cci b0 h10 v cci b0 h11 io13ndb0v2 h12 io21ndb1v0 h13 v cci b1 h14 v cci b1 h15 vmv1 484-pin fbga pin number agle600 function
package pin assignments 3-8 v1.1 h16 gbc2/io38pdb2v0 h17 io37ndb2v0 h18 io41ndb2v0 h19 io41pdb2v0 h20 v cc h21 nc h22 nc j1 io123ndb7v0 j2 io123pdb7v0 j3 nc j4 io124pdb7v0 j5 io125pdb7v0 j6 io126pdb7v0 j7 io130ndb7v1 j8 v cci b7 j9 gnd j10 v cc j11 v cc j12 v cc j13 v cc j14 gnd j15 v cci b2 j16 io38ndb2v0 j17 io40ndb2v0 j18 io40pdb2v0 j19 io45ppb2v1 j20 nc j21 io48pdb2v1 j22 io46pdb2v1 k1 io121ndb7v0 k2 io121pdb7v0 k3 nc k4 io124ndb7v0 k5 io125ndb7v0 k6 io126ndb7v0 k7 gfc1/io120ppb7v0 484-pin fbga pin number agle600 function k8 v cci b7 k9 v cc k10 gnd k11 gnd k12 gnd k13 gnd k14 v cc k15 v cci b2 k16 gcc1/io50ppb2v1 k17 io44ndb2v1 k18 io44pdb2v1 k19 io49npb2v1 k20 io45npb2v1 k21 io48ndb2v1 k22 io46ndb2v1 l1 nc l2 io122pdb7v0 l3 io122ndb7v0 l4 gfb0/io119npb7v0 l5 gfa0/io118ndb6v 1 l6 gfb1/io119ppb7v0 l7 v complf l8 gfc0/io120npb7v0 l9 v cc l10 gnd l11 gnd l12 gnd l13 gnd l14 v cc l15 gcc0/io50npb2v1 l16 gcb1/io51ppb2v1 l17 gca0/io52npb3v0 l18 v complc l19 gcb0/io51npb2v1 l20 io49ppb2v1 484-pin fbga pin number agle600 function l21 io47ndb2v1 l22 io47pdb2v1 m1 nc m2 io114npb6v1 m3 io117ndb6v1 m4 gfa2/io117pdb6v1 m5 gfa1/io118pdb6v1 m6 v ccplf m7 io116ndb6v1 m8 gfb2/io116pdb6v1 m9 v cc m10 gnd m11 gnd m12 gnd m13 gnd m14 v cc m15 gcb2/io54ppb3v0 m16 gca1/io52ppb3v0 m17 gcc2/io55ppb3v0 m18 v ccplc m19 gca2/io53pdb3v0 m20 io53ndb3v0 m21 io56pdb3v0 m22 nc n1 io114ppb6v1 n2 io111ndb6v1 n3 nc n4 gfc2/io115ppb6v1 n5 io113ppb6v1 n6 io112pdb6v1 n7 io112ndb6v1 n8 v cci b6 n9 v cc n10 gnd n11 gnd n12 gnd 484-pin fbga pin number agle600 function
iglooe packaging v1.1 3-9 n13 gnd n14 v cc n15 v cci b3 n16 io54npb3v0 n17 io57npb3v0 n18 io55npb3v0 n19 io57ppb3v0 n20 nc n21 io56ndb3v0 n22 io58pdb3v0 p1 nc p2 io111pdb6v1 p3 io115npb6v1 p4 io113npb6v1 p5 io109ppb6v0 p6 io108pdb6v0 p7 io108ndb6v0 p8 v cci b6 p9 gnd p10 v cc p11 v cc p12 v cc p13 v cc p14 gnd p15 v cci b3 p16 gdb0/io66npb3v1 p17 io60ndb3v1 p18 io60pdb3v1 p19 io61pdb3v1 p20 nc p21 io59pdb3v0 p22 io58ndb3v0 r1 nc r2 io110pdb6v0 r3 v cc r4 io109npb6v0 484-pin fbga pin number agle600 function r5 io106ndb6v0 r6 io106pdb6v0 r7 gec0/io104npb6v0 r8 vmv5 r9 v cci b5 r10 v cci b5 r11 io84ndb5v0 r12 io84pdb5v0 r13 v cci b4 r14 v cci b4 r15 vmv3 r16 v ccpld r17 gdb1/io66ppb3v1 r18 gdc1/io65pdb3v1 r19 io61ndb3v1 r20 v cc r21 io59ndb3v0 r22 io62pdb3v1 t1 nc t2 io110ndb6v0 t3 nc t4 io105pdb6v0 t5 io105ndb6v0 t6 gec1/io104ppb6v0 t7 v comple t8 gndq t9 gea2/io101ppb5v2 t10 io92ndb5v1 t11 io90ndb5v1 t12 io82ndb5v0 t13 io74ndb4v1 t14 io74pdb4v1 t15 gndq t16 v compld t17 v jtag t18 gdc0/io65ndb3v1 484-pin fbga pin number agle600 function t19 gda1/io67pdb3v1 t20 nc t21 io64pdb3v1 t22 io62ndb3v1 u1 nc u2 io107pdb6v0 u3 io107ndb6v0 u4 geb1/io103pdb6v0 u5 geb0/io103ndb6v 0 u6 vmv6 u7 v ccple u8 io101npb5v2 u9 io95ppb5v1 u10 io92pdb5v1 u11 io90pdb5v1 u12 io82pdb5v0 u13 io76ndb4v1 u14 io76pdb4v1 u15 vmv4 u16 tck u17 v pump u18 trst u19 gda0/io67ndb3v1 u20 nc u21 io64ndb3v1 u22 io63pdb3v1 v1 nc v2 nc v3 gnd v4 gea1/io102pdb6v 0 v5 gea0/io102ndb6v 0 v6 gndq v7 gec2/io99pdb5v2 v8 io95npb5v1 484-pin fbga pin number agle600 function
package pin assignments 3-10 v1.1 v9 io91ndb5v1 v10 io91pdb5v1 v11 io83ndb5v0 v12 io83pdb5v0 v13 io77ndb4v1 v14 io77pdb4v1 v15 io69ndb4v0 v16 gdb2/io69pdb4v0 v17 tdi v18 gndq v19 tdo v20 gnd v21 nc v22 io63ndb3v1 w1 nc w2 nc w3 nc w4 gnd w5 io100ndb5v2 w6 ff/geb2/io100pdb5 v2 w7 io99ndb5v2 w8 io88ndb5v0 w9 io88pdb5v0 w10 io89ndb5v0 w11 io80ndb4v1 w12 io81ndb4v1 w13 io81pdb4v1 w14 io70ndb4v0 w15 gdc2/io70pdb4v0 w16 io68ndb4v0 w17 gda2/io68pdb4v0 w18 tms w19 gnd w20 nc w21 nc 484-pin fbga pin number agle600 function w22 nc y1 v cci b6 y2 nc y3 nc y4 io98ndb5v2 y5 gnd y6 io94ndb5v1 y7 io94pdb5v1 y8 v cc y9 v cc y10 io89pdb5v0 y11 io80pdb4v1 y12 io78npb4v1 y13 nc y14 v cc y15 v cc y16 nc y17 nc y18 gnd y19 nc y20 nc y21 nc y22 v cci b3 484-pin fbga pin number agle600 function
iglooe packaging v1.1 3-11 484-pin fbga pin number agle3000 function a1 gnd a2 gnd a3 v cci b0 a4 io10ndb0v1 a5 io10pdb0v1 a6 io16ndb0v1 a7 io16pdb0v1 a8 io18pdb0v2 a9 io24pdb0v2 a10 io28ndb0v3 a11 io28pdb0v3 a12 io46pdb1v0 a13 io54pdb1v1 a14 io56ndb1v1 a15 io56pdb1v1 a16 io64ndb1v2 a17 io64pdb1v2 a18 io72ndb1v3 a19 io74ndb1v4 a20 v cci b1 a21 gnd a22 gnd aa1 gnd aa2 v cci b6 aa3 io228pdb5v4 aa4 io224pdb5v3 aa5 io218ndb5v3 aa6 io218pdb5v3 aa7 io212ndb5v2 aa8 io212pdb5v2 aa9 io198pdb5v0 aa10 io198ndb5v0 aa11 io188ppb4v4 aa12 io180ndb4v3 aa13 io180pdb4v3 aa14 io170ndb4v2 aa15 io170pdb4v2 aa16 io166ndb4v1 aa17 io166pdb4v1 aa18 io160ndb4v0 aa19 io160pdb4v0 aa20 io158npb4v0 aa21 v cci b3 aa22 gnd ab1 gnd ab2 gnd ab3 v cci b5 ab4 io216ndb5v2 ab5 io216pdb5v2 ab6 io210ndb5v2 ab7 io210pdb5v2 ab8 io208ndb5v1 ab9 io208pdb5v1 ab10 io197ndb5v0 ab11 io197pdb5v0 ab12 io174ndb4v2 ab13 io174pdb4v2 ab14 io172ndb4v2 ab15 io172pdb4v2 ab16 io168ndb4v1 ab17 io168pdb4v1 ab18 io162ndb4v1 ab19 io162pdb4v1 ab20 v cci b4 ab21 gnd ab22 gnd b1 gnd b2 v cci b7 b3 io06ppb0v0 b4 io08ndb0v0 b5 io08pdb0v0 b6 io14ndb0v1 484-pin fbga pin number agle3000 function b7 io14pdb0v1 b8 io18ndb0v2 b9 io24ndb0v2 b10 io34pdb0v4 b11 io40pdb0v4 b12 io46ndb1v0 b13 io54ndb1v1 b14 io62ndb1v2 b15 io62pdb1v2 b16 io68ndb1v3 b17 io68pdb1v3 b18 io72pdb1v3 b19 io74pdb1v4 b20 io76npb1v4 b21 v cci b2 b22 gnd c1 v cci b7 c2 io303pdb7v3 c3 io305pdb7v3 c4 io06npb0v0 c5 gnd c6 io12ndb0v1 c7 io12pdb0v1 c8 v cc c9 v cc c10 io34ndb0v4 c11 io40ndb0v4 c12 io48ndb1v0 c13 io48pdb1v0 c14 v cc c15 v cc c16 io70ndb1v3 c17 io70pdb1v3 c18 gnd c19 io76ppb1v4 c20 io88ndb2v0 484-pin fbga pin number agle3000 function
package pin assignments 3-12 v1.1 c21 io94ppb2v1 c22 v cci b2 d1 io293pdb7v2 d2 io303ndb7v3 d3 io305ndb7v3 d4 gnd d5 gaa0/io00ndb0v0 d6 gaa1/io00pdb0v0 d7 gab0/io01ndb0v0 d8 io20pdb0v2 d9 io22pdb0v2 d10 io30pdb0v3 d11 io38ndb0v4 d12 io52ndb1v1 d13 io52pdb1v1 d14 io66ndb1v3 d15 io66pdb1v3 d16 gbb1/io80pdb1v4 d17 gba0/io81ndb1v4 d18 gba1/io81pdb1v4 d19 gnd d20 io88pdb2v0 d21 io90pdb2v1 d22 io94npb2v1 e1 io293ndb7v2 e2 io299ppb7v3 e3 gnd e4 gab2/io308pdb7v4 e5 gaa2/io309pdb7v4 e6 gndq e7 gab1/io01pdb0v0 e8 io20ndb0v2 e9 io22ndb0v2 e10 io30ndb0v3 e11 io38pdb0v4 e12 io44ndb1v0 484-pin fbga pin number agle3000 function e13 io58ndb1v2 e14 io58pdb1v2 e15 gbc1/io79pdb1v4 e16 gbb0/io80ndb1v4 e17 gndq e18 gba2/io82pdb2v0 e19 io86ndb2v0 e20 gnd e21 io90ndb2v1 e22 io98pdb2v2 f1 io299npb7v3 f2 io301ndb7v3 f3 io301pdb7v3 f4 io308ndb7v4 f5 io309ndb7v4 f6 vmv7 f7 v ccpla f8 gac0/io02ndb0v0 f9 gac1/io02pdb0v0 f10 io32ndb0v3 f11 io32pdb0v3 f12 io44pdb1v0 f13 io50ndb1v1 f14 io60pdb1v2 f15 gbc0/io79ndb1v4 f16 v ccplb f17 vmv2 f18 io82ndb2v0 f19 io86pdb2v0 f20 io96pdb2v1 f21 io96ndb2v1 f22 io98ndb2v2 g1 io289ndb7v1 g2 io289pdb7v1 g3 io291ppb7v2 g4 io295pdb7v2 484-pin fbga pin number agle3000 function g5 io297pdb7v2 g6 gac2/io307pdb7v4 g7 v compla g8 gndq g9 io26ndb0v3 g10 io26pdb0v3 g11 io36pdb0v4 g12 io42pdb1v0 g13 io50pdb1v1 g14 io60ndb1v2 g15 gndq g16 v complb g17 gbb2/io83pdb2v0 g18 io92pdb2v1 g19 io92ndb2v1 g20 io102pdb2v2 g21 io102ndb2v2 g22 io105ndb2v2 h1 io286psb7v1 h2 io291npb7v2 h3 v cc h4 io295ndb7v2 h5 io297ndb7v2 h6 io307ndb7v4 h7 io287pdb7v1 h8 vmv0 h9 v cci b0 h10 v cci b0 h11 io36ndb0v4 h12 io42ndb1v0 h13 v cci b1 h14 v cci b1 h15 vmv1 h16 gbc2/io84pdb2v0 h17 io83ndb2v0 h18 io100ndb2v2 484-pin fbga pin number agle3000 function
iglooe packaging v1.1 3-13 h19 io100pdb2v2 h20 v cc h21 vmv2 h22 io105pdb2v2 j1 io285ndb7v1 j2 io285pdb7v1 j3 vmv7 j4 io279pdb7v0 j5 io283pdb7v1 j6 io281pdb7v0 j7 io287ndb7v1 j8 v cci b7 j9 gnd j10 v cc j11 v cc j12 v cc j13 v cc j14 gnd j15 v cci b2 j16 io84ndb2v0 j17 io104ndb2v2 j18 io104pdb2v2 j19 io106ppb2v3 j20 gndq j21 io109pdb2v3 j22 io107pdb2v3 k1 io277ndb7v0 k2 io277pdb7v0 k3 gndq k4 io279ndb7v0 k5 io283ndb7v1 k6 io281ndb7v0 k7 gfc1/io275ppb7v0 k8 v cci b7 k9 v cc k10 gnd 484-pin fbga pin number agle3000 function k11 gnd k12 gnd k13 gnd k14 v cc k15 v cci b2 k16 gcc1/io112ppb2v3 k17 io108ndb2v3 k18 io108pdb2v3 k19 io110npb2v3 k20 io106npb2v3 k21 io109ndb2v3 k22 io107ndb2v3 l1 io257psb6v2 l2 io276pdb7v0 l3 io276ndb7v0 l4 gfb0/io274npb7v0 l5 gfa0/io273ndb6v4 l6 gfb1/io274ppb7v0 l7 v complf l8 gfc0/io275npb7v0 l9 v cc l10 gnd l11 gnd l12 gnd l13 gnd l14 v cc l15 gcc0/io112npb2v3 l16 gcb1/io113ppb2v3 l17 gca0/io114npb3v0 l18 v complc l19 gcb0/io113npb2v3 l20 io110ppb2v3 l21 io111ndb2v3 l22 io111pdb2v3 m1 gndq m2 io255npb6v2 484-pin fbga pin number agle3000 function m3 io272ndb6v4 m4 gfa2/io272pdb6v4 m5 gfa1/io273pdb6v4 m6 v ccplf m7 io271ndb6v4 m8 gfb2/io271pdb6v4 m9 v cc m10 gnd m11 gnd m12 gnd m13 gnd m14 v cc m15 gcb2/io116ppb3v0 m16 gca1/io114ppb3v0 m17 gcc2/io117ppb3v0 m18 v ccplc m19 gca2/io115pdb3v0 m20 io115ndb3v0 m21 io126pdb3v1 m22 io124psb3v1 n1 io255ppb6v2 n2 io253ndb6v2 n3 vmv6 n4 gfc2/io270ppb6v4 n5 io261ppb6v3 n6 io263pdb6v3 n7 io263ndb6v3 n8 v cci b6 n9 v cc n10 gnd n11 gnd n12 gnd n13 gnd n14 v cc n15 v cci b3 n16 io116npb3v0 484-pin fbga pin number agle3000 function
package pin assignments 3-14 v1.1 n17 io132npb3v2 n18 io117npb3v0 n19 io132ppb3v2 n20 gndq n21 io126ndb3v1 n22 io128pdb3v1 p1 io247pdb6v1 p2 io253pdb6v2 p3 io270npb6v4 p4 io261npb6v3 p5 io249ppb6v1 p6 io259pdb6v3 p7 io259ndb6v3 p8 v cci b6 p9 gnd p10 v cc p11 v cc p12 v cc p13 v cc p14 gnd p15 v cci b3 p16 gdb0/io152npb3v4 p17 io136ndb3v2 p18 io136pdb3v2 p19 io138pdb3v3 p20 vmv3 p21 io130pdb3v2 p22 io128ndb3v1 r1 io247ndb6v1 r2 io245pdb6v1 r3 v cc r4 io249npb6v1 r5 io251ndb6v2 r6 io251pdb6v2 r7 gec0/io236npb6v0 r8 vmv5 484-pin fbga pin number agle3000 function r9 v cci b5 r10 v cci b5 r11 io196ndb5v0 r12 io196pdb5v0 r13 v cci b4 r14 v cci b4 r15 vmv3 r16 v ccpld r17 gdb1/io152ppb3v4 r18 gdc1/io151pdb3v4 r19 io138ndb3v3 r20 v cc r21 io130ndb3v2 r22 io134pdb3v2 t1 io243ppb6v1 t2 io245ndb6v1 t3 io243npb6v1 t4 io241pdb6v0 t5 io241ndb6v0 t6 gec1/io236ppb6v0 t7 v comple t8 gndq t9 gea2/io233ppb5v4 t10 io206ndb5v1 t11 io202ndb5v1 t12 io194ndb5v0 t13 io186ndb4v4 t14 io186pdb4v4 t15 gndq t16 v compld t17 v jtag t18 gdc0/io151ndb3v4 t19 gda1/io153pdb3v4 t20 io144pdb3v3 t21 io140pdb3v3 t22 io134ndb3v2 484-pin fbga pin number agle3000 function u1 io240ppb6v0 u2 io238pdb6v0 u3 io238ndb6v0 u4 geb1/io235pdb6v0 u5 geb0/io235ndb6v0 u6 vmv6 u7 v ccple u8 io233npb5v4 u9 io222ppb5v3 u10 io206pdb5v1 u11 io202pdb5v1 u12 io194pdb5v0 u13 io176ndb4v2 u14 io176pdb4v2 u15 vmv4 u16 tck u17 v pump u18 trst u19 gda0/io153ndb3v4 u20 io144ndb3v3 u21 io140ndb3v3 u22 io142pdb3v3 v1 io239pdb6v0 v2 io240npb6v0 v3 gnd v4 gea1/io234pdb6v0 v5 gea0/io234ndb6v0 v6 gndq v7 gec2/io231pdb5v4 v8 io222npb5v3 v9 io204ndb5v1 v10 io204pdb5v1 v11 io195ndb5v0 v12 io195pdb5v0 v13 io178ndb4v3 v14 io178pdb4v3 484-pin fbga pin number agle3000 function
iglooe packaging v1.1 3-15 v15 io155ndb4v0 v16 gdb2/io155pdb4v0 v17 tdi v18 gndq v19 tdo v20 gnd v21 io146pdb3v4 v22 io142ndb3v3 w1 io239ndb6v0 w2 io237pdb6v0 w3 io230psb5v4 w4 gnd w5 io232ndb5v4 w6 ff/geb2/io232pdb5v 4 w7 io231ndb5v4 w8 io214ndb5v2 w9 io214pdb5v2 w10 io200ndb5v0 w11 io192ndb4v4 w12 io184ndb4v3 w13 io184pdb4v3 w14 io156ndb4v0 w15 gdc2/io156pdb4v0 w16 io154ndb4v0 w17 gda2/io154pdb4v0 w18 tms w19 gnd w20 io150ndb3v4 w21 io146ndb3v4 w22 io148ppb3v4 y1 v cci b6 y2 io237ndb6v0 y3 io228ndb5v4 y4 io224ndb5v3 y5 gnd 484-pin fbga pin number agle3000 function y6 io220ndb5v3 y7 io220pdb5v3 y8 v cc y9 v cc y10 io200pdb5v0 y11 io192pdb4v4 y12 io188npb4v4 y13 io187psb4v4 y14 v cc y15 v cc y16 io164ndb4v1 y17 io164pdb4v1 y18 gnd y19 io158ppb4v0 y20 io150pdb3v4 y21 io148npb3v4 y22 v cci b3 484-pin fbga pin number agle3000 function
package pin assignments 3-16 v1.1 896-pin fbga note for package manufacturing and environmental information, visit the resource center at http://www.actel.com/products/ solutions/pac kage/docs.aspx . note: this is the bottom view of the package. a1 ball pad corner a b c d e f g h j k l m n p r t u v w y aa ab ac ad ae af 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 ag ah aj ak
iglooe packaging v1.1 3-17 896-pin fbga pin number agle3000 function a2 gnd a3 gnd a4 io14npb0v1 a5 gnd a6 io07npb0v0 a7 gnd a8 io09ndb0v1 a9 io17ndb0v2 a10 io17pdb0v2 a11 io21ndb0v2 a12 io21pdb0v2 a13 io33ndb0v4 a14 io33pdb0v4 a15 io35ndb0v4 a16 io35pdb0v4 a17 io41ndb1v0 a18 io43ndb1v0 a19 io43pdb1v0 a20 io45ndb1v0 a21 io45pdb1v0 a22 io57ndb1v2 a23 io57pdb1v2 a24 gnd a25 io69ppb1v3 a26 gnd a27 gbc1/io79ppb1v4 a28 gnd a29 gnd aa1 io256pdb6v2 aa2 io248pdb6v1 aa3 io248ndb6v1 aa4 io246ndb6v1 aa5 gea1/io234pdb6v0 aa6 gea0/io234ndb6v0 aa7 io243ppb6v1 aa8 io245ndb6v1 aa9 geb1/io235ppb6v0 aa10 v cc aa11 io226ppb5v4 aa12 v cci b5 aa13 v cci b5 aa14 v cci b5 aa15 v cci b5 aa16 v cci b4 aa17 v cci b4 aa18 v cci b4 aa19 v cci b4 aa20 io174pdb4v2 aa21 v cc aa22 io142npb3v3 aa23 io144ndb3v3 aa24 io144pdb3v3 aa25 io146ndb3v4 aa26 io146pdb3v4 aa27 io147pdb3v4 aa28 io139ndb3v3 aa29 io139pdb3v3 aa30 io133ndb3v2 ab1 io256ndb6v2 ab2 io244pdb6v1 ab3 io244ndb6v1 ab4 io241pdb6v0 ab5 io241ndb6v0 ab6 io243npb6v1 ab7 v cci b6 ab8 v ccple ab9 v cc ab10 io222pdb5v3 ab11 io218ppb5v3 ab12 io206ndb5v1 896-pin fbga pin number agle3000 function ab13 io206pdb5v1 ab14 io198ndb5v0 ab15 io198pdb5v0 ab16 io192ndb4v4 ab17 io192pdb4v4 ab18 io178ndb4v3 ab19 io178pdb4v3 ab20 io174ndb4v2 ab21 io162npb4v1 ab22 v cc ab23 v ccpld ab24 v cci b3 ab25 io150pdb3v4 ab26 io148pdb3v4 ab27 io147ndb3v4 ab28 io145pdb3v3 ab29 io143pdb3v3 ab30 io137pdb3v2 ac1 io254pdb6v2 ac2 io254ndb6v2 ac3 io240pdb6v0 ac4 gec1/io236pdb6v0 ac5 io237pdb6v0 ac6 io237ndb6v0 ac7 v comple ac8 gnd ac9 io226npb5v4 ac10 io222ndb5v3 ac11 io216npb5v2 ac12 io210npb5v2 ac13 io204ndb5v1 ac14 io204pdb5v1 ac15 io194ndb5v0 ac16 io188ndb4v4 ac17 io188pdb4v4 896-pin fbga pin number agle3000 function
package pin assignments 3-18 v1.1 ac18 io182ppb4v3 ac19 io170npb4v2 ac20 io164ndb4v1 ac21 io164pdb4v1 ac22 io162ppb4v1 ac23 gnd ac24 v compld ac25 io150ndb3v4 ac26 io148ndb3v4 ac27 gda1/io153pdb3v4 ac28 io145ndb3v3 ac29 io143ndb3v3 ac30 io137ndb3v2 ad1 gnd ad2 io242npb6v1 ad3 io240ndb6v0 ad4 gec0/io236ndb6v0 ad5 v cci b6 ad6 gndq ad6 gndq ad7 v cc ad8 vmv5 ad9 v cci b5 ad10 io224ppb5v3 ad11 io218npb5v3 ad12 io216ppb5v2 ad13 io210ppb5v2 ad14 io202ppb5v1 ad15 io194pdb5v0 ad16 io190pdb4v4 ad17 io182npb4v3 ad18 io176ndb4v2 ad19 io176pdb4v2 ad20 io170ppb4v2 ad21 io166pdb4v1 896-pin fbga pin number agle3000 function ad22 v cci b4 ad23 tck ad24 v cc ad25 trst ad26 v cci b3 ad27 gda0/io153ndb3v4 ad28 gdc0/io151ndb3v4 ad29 gdc1/io151pdb3v4 ad30 gnd ae1 io242ppb6v1 ae2 v cc ae3 io239pdb6v0 ae4 io239ndb6v0 ae5 vmv6 ae5 vmv6 ae6 gnd ae7 gndq ae8 io230ndb5v4 ae9 io224npb5v3 ae10 io214npb5v2 ae11 io212ndb5v2 ae12 io212pdb5v2 ae13 io202npb5v1 ae14 io200ndb5v0 ae15 io196pdb5v0 ae16 io190ndb4v4 ae17 io184pdb4v3 ae18 io184ndb4v3 ae19 io172pdb4v2 ae20 io172ndb4v2 ae21 io166ndb4v1 ae22 io160pdb4v0 ae23 gndq ae24 vmv4 ae25 gnd 896-pin fbga pin number agle3000 function ae26 gdb0/io152ndb3v4 ae27 gdb1/io152pdb3v4 ae28 vmv3 ae28 vmv3 ae29 v cc ae30 io149pdb3v4 af1 gnd af2 io238ppb6v0 af3 v cci b6 af4 io220npb5v3 af5 v cc af6 io228ndb5v4 af7 v cci b5 af8 io230pdb5v4 af9 io229ndb5v4 af10 io229pdb5v4 af11 io214ppb5v2 af12 io208ndb5v1 af13 io208pdb5v1 af14 io200pdb5v0 af15 io196ndb5v0 af16 io186ndb4v4 af17 io186pdb4v4 af18 io180ndb4v3 af19 io180pdb4v3 af20 io168ndb4v1 af21 io168pdb4v1 af22 io160ndb4v0 af23 io158npb4v0 af24 v cci b4 af25 io154npb4v0 af26 v cc af27 tdo af28 v cci b3 af29 gndq 896-pin fbga pin number agle3000 function
iglooe packaging v1.1 3-19 af29 gndq af30 gnd ag1 io238npb6v0 ag2 v cc ag3 io232npb5v4 ag4 gnd ag5 io220ppb5v3 ag6 io228pdb5v4 ag7 io231ndb5v4 ag8 gec2/io231pdb5v4 ag9 io225npb5v3 ag10 io223npb5v3 ag11 io221pdb5v3 ag12 io221ndb5v3 ag13 io205npb5v1 ag14 io199ndb5v0 ag15 io199pdb5v0 ag16 io187ndb4v4 ag17 io187pdb4v4 ag18 io181ndb4v3 ag19 io171ppb4v2 ag20 io165npb4v1 ag21 io161npb4v0 ag22 io159ndb4v0 ag23 io159pdb4v0 ag24 io158ppb4v0 ag25 gdb2/io155pdb4v0 ag26 gda2/io154ppb4v0 ag27 gnd ag28 v jtag ag29 v cc ag30 io149ndb3v4 ah1 gnd ah2 io233npb5v4 ah3 v cc 896-pin fbga pin number agle3000 function ah4 ff/geb2/io232ppb5v 4 ah5 v cci b5 ah6 io219ndb5v3 ah7 io219pdb5v3 ah8 io227ndb5v4 ah9 io227pdb5v4 ah10 io225ppb5v3 ah11 io223ppb5v3 ah12 io211ndb5v2 ah13 io211pdb5v2 ah14 io205ppb5v1 ah15 io195ndb5v0 ah16 io185ndb4v3 ah17 io185pdb4v3 ah18 io181pdb4v3 ah19 io177ndb4v2 ah20 io171npb4v2 ah21 io165ppb4v1 ah22 io161ppb4v0 ah23 io157ndb4v0 ah24 io157pdb4v0 ah25 io155ndb4v0 ah26 v cci b4 ah27 tdi ah28 v cc ah29 v pump ah30 gnd aj1 gnd aj2 gnd aj3 gea2/io233ppb5v4 aj4 v cc aj5 io217npb5v2 aj6 v cc aj7 io215npb5v2 896-pin fbga pin number agle3000 function aj8 io213ndb5v2 aj9 io213pdb5v2 aj10 io209ndb5v1 aj11 io209pdb5v1 aj12 io203ndb5v1 aj13 io203pdb5v1 aj14 io197ndb5v0 aj15 io195pdb5v0 aj16 io183ndb4v3 aj17 io183pdb4v3 aj18 io179npb4v3 aj19 io177pdb4v2 aj20 io173ndb4v2 aj21 io173pdb4v2 aj22 io163ndb4v1 aj23 io163pdb4v1 aj24 io167npb4v1 aj25 v cc aj26 io156npb4v0 aj27 v cc aj28 tms aj29 gnd aj30 gnd ak2 gnd ak3 gnd ak4 io217ppb5v2 ak5 gnd ak6 io215ppb5v2 ak7 gnd ak8 io207ndb5v1 ak9 io207pdb5v1 ak10 io201ndb5v0 ak11 io201pdb5v0 ak12 io193ndb4v4 ak13 io193pdb4v4 896-pin fbga pin number agle3000 function
package pin assignments 3-20 v1.1 ak14 io197pdb5v0 ak15 io191ndb4v4 ak16 io191pdb4v4 ak17 io189ndb4v4 ak18 io189pdb4v4 ak19 io179ppb4v3 ak20 io175ndb4v2 ak21 io175pdb4v2 ak22 io169ndb4v1 ak23 io169pdb4v1 ak24 gnd ak25 io167ppb4v1 ak26 gnd ak27 gdc2/io156ppb4v0 ak28 gnd ak29 gnd b1 gnd b2 gnd b3 gaa2/io309ppb7v4 b4 v cc b5 io14ppb0v1 b6 v cc b7 io07ppb0v0 b8 io09pdb0v1 b9 io15ppb0v1 b10 io19ndb0v2 b11 io19pdb0v2 b12 io29ndb0v3 b13 io29pdb0v3 b14 io31ppb0v3 b15 io37ndb0v4 b16 io37pdb0v4 b17 io41pdb1v0 b18 io51ndb1v1 b19 io59pdb1v2 896-pin fbga pin number agle3000 function b20 io53pdb1v1 b21 io53ndb1v1 b22 io61ndb1v2 b23 io61pdb1v2 b24 io69npb1v3 b25 v cc b26 gbc0/io79npb1v4 b27 v cc b28 io64npb1v2 b29 gnd b30 gnd c1 gnd c2 io309npb7v4 c3 v cc c4 gaa0/io00npb0v0 c5 v cci b0 c6 io03pdb0v0 c7 io03ndb0v0 c8 gab1/io01pdb0v0 c9 io05pdb0v0 c10 io15npb0v1 c11 io25ndb0v3 c12 io25pdb0v3 c13 io31npb0v3 c14 io27ndb0v3 c15 io39ndb0v4 c16 io39pdb0v4 c17 io55ppb1v1 c18 io51pdb1v1 c19 io59ndb1v2 c20 io63ndb1v2 c21 io63pdb1v2 c22 io67ndb1v3 c23 io67pdb1v3 c24 io75ndb1v4 896-pin fbga pin number agle3000 function c25 io75pdb1v4 c26 v cci b1 c27 io64ppb1v2 c28 v cc c29 gba1/io81ppb1v4 c30 gnd d1 io303ppb7v3 d2 v cc d3 io305npb7v3 d4 gnd d5 gaa1/io00ppb0v0 d6 gac1/io02pdb0v0 d7 io06npb0v0 d8 gab0/io01ndb0v0 d9 io05ndb0v0 d10 io11ndb0v1 d11 io11pdb0v1 d12 io23ndb0v2 d13 io23pdb0v2 d14 io27pdb0v3 d15 io40pdb0v4 d16 io47ndb1v0 d17 io47pdb1v0 d18 io55npb1v1 d19 io65ndb1v3 d20 io65pdb1v3 d21 io71ndb1v3 d22 io71pdb1v3 d23 io73ndb1v4 d24 io73pdb1v4 d25 io74ndb1v4 d26 gbb0/io80npb1v4 d27 gnd d28 gba0/io81npb1v4 d29 v cc 896-pin fbga pin number agle3000 function
iglooe packaging v1.1 3-21 d30 gba2/io82ppb2v0 e1 gnd e2 io303npb7v3 e3 v cci b7 e4 io305ppb7v3 e5 v cc e6 gac0/io02ndb0v0 e7 v cci b0 e8 io06ppb0v0 e9 io24ndb0v2 e10 io24pdb0v2 e11 io13ndb0v1 e12 io13pdb0v1 e13 io34ndb0v4 e14 io34pdb0v4 e15 io40ndb0v4 e16 io49ndb1v1 e17 io49pdb1v1 e18 io50pdb1v1 e19 io58pdb1v2 e20 io60ndb1v2 e21 io77pdb1v4 e22 io68ndb1v3 e23 io68pdb1v3 e24 v cci b1 e25 io74pdb1v4 e26 v cc e27 gbb1/io80ppb1v4 e28 v cci b2 e29 io82npb2v0 e30 gnd f1 io296ppb7v2 f2 v cc f3 io306pdb7v4 f4 io297pdb7v2 896-pin fbga pin number agle3000 function f5 vmv7 f5 vmv7 f6 gnd f7 gndq f8 io12ndb0v1 f9 io12pdb0v1 f10 io10pdb0v1 f11 io16pdb0v1 f12 io22ndb0v2 f13 io30ndb0v3 f14 io30pdb0v3 f15 io36pdb0v4 f16 io48ndb1v0 f17 io48pdb1v0 f18 io50ndb1v1 f19 io58ndb1v2 f20 io60pdb1v2 f21 io77ndb1v4 f22 io72ndb1v3 f23 io72pdb1v3 f24 gndq f25 gnd f26 vmv2 f26 vmv2 f27 io86pdb2v0 f28 io92pdb2v1 f29 v cc f30 io100npb2v2 g1 gnd g2 io296npb7v2 g3 io306ndb7v4 g4 io297ndb7v2 g5 v cci b7 g6 gndq g6 gndq 896-pin fbga pin number agle3000 function g7 v cc g8 vmv0 g9 v cci b0 g10 io10ndb0v1 g11 io16ndb0v1 g12 io22pdb0v2 g13 io26ppb0v3 g14 io38npb0v4 g15 io36ndb0v4 g16 io46ndb1v0 g17 io46pdb1v0 g18 io56ndb1v1 g19 io56pdb1v1 g20 io66ndb1v3 g21 io66pdb1v3 g22 v cci b1 g23 vmv1 g24 v cc g25 gndq g25 gndq g26 v cci b2 g27 io86ndb2v0 g28 io92ndb2v1 g29 io100ppb2v2 g30 gnd h1 io294pdb7v2 h2 io294ndb7v2 h3 io300ndb7v3 h4 io300pdb7v3 h5 io295pdb7v2 h6 io299pdb7v3 h7 v compla h8 gnd h9 io08ndb0v0 h10 io08pdb0v0 896-pin fbga pin number agle3000 function
package pin assignments 3-22 v1.1 h11 io18pdb0v2 h12 io26npb0v3 h13 io28ndb0v3 h14 io28pdb0v3 h15 io38ppb0v4 h16 io42ndb1v0 h17 io52ndb1v1 h18 io52pdb1v1 h19 io62ndb1v2 h20 io62pdb1v2 h21 io70ndb1v3 h22 io70pdb1v3 h23 gnd h24 v complb h25 gbc2/io84pdb2v0 h26 io84ndb2v0 h27 io96pdb2v1 h28 io96ndb2v1 h29 io89pdb2v0 h30 io89ndb2v0 j1 io290ndb7v2 j2 io290pdb7v2 j3 io302ndb7v3 j4 io302pdb7v3 j5 io295ndb7v2 j6 io299ndb7v3 j7 v cci b7 j8 v ccpla j9 v cc j10 io04npb0v0 j11 io18ndb0v2 j12 io20ndb0v2 j13 io20pdb0v2 j14 io32ndb0v3 j15 io32pdb0v3 896-pin fbga pin number agle3000 function j16 io42pdb1v0 j17 io44ndb1v0 j18 io44pdb1v0 j19 io54ndb1v1 j20 io54pdb1v1 j21 io76npb1v4 j22 v cc j23 v ccplb j24 v cci b2 j25 io90pdb2v1 j26 io90ndb2v1 j27 gbb2/io83pdb2v0 j28 io83ndb2v0 j29 io91pdb2v1 j30 io91ndb2v1 k1 io288ndb7v1 k2 io288pdb7v1 k3 io304ndb7v3 k4 io304pdb7v3 k5 gab2/io308pdb7v4 k6 io308ndb7v4 k7 io301pdb7v3 k8 io301ndb7v3 k9 gac2/io307ppb7v4 k10 v cc k11 io04ppb0v0 k12 v cci b0 k13 v cci b0 k14 v cci b0 k15 v cci b0 k16 v cci b1 k17 v cci b1 k18 v cci b1 k19 v cci b1 k20 io76ppb1v4 896-pin fbga pin number agle3000 function k21 v cc k22 io78ppb1v4 k23 io88ndb2v0 k24 io88pdb2v0 k25 io94pdb2v1 k26 io94ndb2v1 k27 io85pdb2v0 k28 io85ndb2v0 k29 io93pdb2v1 k30 io93ndb2v1 l1 io286ndb7v1 l2 io286pdb7v1 l3 io298ndb7v3 l4 io298pdb7v3 l5 io283pdb7v1 l6 io291ndb7v2 l7 io291pdb7v2 l8 io293pdb7v2 l9 io293ndb7v2 l10 io307npb7v4 l11 v cc l12 v cc l13 v cc l14 v cc l15 v cc l16 v cc l17 v cc l18 v cc l19 v cc l20 v cc l21 io78npb1v4 l22 io104npb2v2 l23 io98ndb2v2 l24 io98pdb2v2 l25 io87pdb2v0 896-pin fbga pin number agle3000 function
iglooe packaging v1.1 3-23 l26 io87ndb2v0 l27 io97pdb2v1 l28 io101pdb2v2 l29 io103pdb2v2 l30 io119ndb3v0 m1 io282ndb7v1 m2 io282pdb7v1 m3 io292ndb7v2 m4 io292pdb7v2 m5 io283ndb7v1 m6 io285pdb7v1 m7 io287pdb7v1 m8 io289pdb7v1 m9 io289ndb7v1 m10 v cci b7 m11 v cc m12 gnd m13 gnd m14 gnd m15 gnd m16 gnd m17 gnd m18 gnd m19 gnd m20 v cc m21 v cci b2 m22 nc m23 io104ppb2v2 m24 io102pdb2v2 m25 io102ndb2v2 m26 io95pdb2v1 m27 io97ndb2v1 m28 io101ndb2v2 m29 io103ndb2v2 m30 io119pdb3v0 896-pin fbga pin number agle3000 function n1 io276pdb7v0 n2 io278pdb7v0 n3 io280pdb7v0 n4 io284pdb7v1 n5 io279pdb7v0 n6 io285ndb7v1 n7 io287ndb7v1 n8 io281ndb7v0 n9 io281pdb7v0 n10 v cci b7 n11 v cc n12 gnd n13 gnd n14 gnd n15 gnd n16 gnd n17 gnd n18 gnd n19 gnd n20 v cc n21 v cci b2 n22 io106ndb2v3 n23 io106pdb2v3 n24 io108pdb2v3 n25 io108ndb2v3 n26 io95ndb2v1 n27 io99ndb2v2 n28 io99pdb2v2 n29 io107pdb2v3 n30 io107ndb2v3 p1 io276ndb7v0 p2 io278ndb7v0 p3 io280ndb7v0 p4 io284ndb7v1 p5 io279ndb7v0 896-pin fbga pin number agle3000 function p6 gfc1/io275pdb7v0 p7 gfc0/io275ndb7v0 p8 io277pdb7v0 p9 io277ndb7v0 p10 v cci b7 p11 v cc p12 gnd p13 gnd p14 gnd p15 gnd p16 gnd p17 gnd p18 gnd p19 gnd p20 v cc p21 v cci b2 p22 gcc1/io112pdb2v3 p23 io110pdb2v3 p24 io110ndb2v3 p25 io109ppb2v3 p26 io111npb2v3 p27 io105pdb2v2 p28 io105ndb2v2 p29 gcc2/io117pdb3v0 p30 io117ndb3v0 r1 gfc2/io270pdb6v4 r2 gfb1/io274ppb7v0 r3 v complf r4 gfa0/io273ndb6v4 r5 gfb0/io274npb7v0 r6 io271ndb6v4 r7 gfb2/io271pdb6v4 r8 io269pdb6v4 r9 io269ndb6v4 r10 v cci b7 896-pin fbga pin number agle3000 function
package pin assignments 3-24 v1.1 r11 v cc r12 gnd r13 gnd r14 gnd r15 gnd r16 gnd r17 gnd r18 gnd r19 gnd r20 v cc r21 v cci b2 r22 gcc0/io112ndb2v3 r23 gcb2/io116pdb3v0 r24 io118pdb3v0 r25 io111ppb2v3 r26 io122ppb3v1 r27 gca0/io114npb3v0 r28 v complc r29 gcb1/io113ppb2v3 r30 io115npb3v0 t1 io270ndb6v4 t2 v ccplf t3 gfa2/io272ppb6v4 t4 gfa1/io273pdb6v4 t5 io272npb6v4 t6 io267ndb6v4 t7 io267pdb6v4 t8 io265pdb6v3 t9 io263pdb6v3 t10 v cci b6 t11 v cc t12 gnd t13 gnd t14 gnd t15 gnd 896-pin fbga pin number agle3000 function t16 gnd t17 gnd t18 gnd t19 gnd t20 v cc t21 v cci b3 t22 io109npb2v3 t23 io116ndb3v0 t24 io118ndb3v0 t25 io122npb3v1 t26 gca1/io114ppb3v0 t27 gcb0/io113npb2v3 t28 gca2/io115ppb3v0 t29 v ccplc t30 io121pdb3v0 u1 io268pdb6v4 u2 io264ndb6v3 u3 io264pdb6v3 u4 io258pdb6v3 u5 io258ndb6v3 u6 io257ppb6v2 u7 io261ppb6v3 u8 io265ndb6v3 u9 io263ndb6v3 u10 v cci b6 u11 v cc u12 gnd u13 gnd u14 gnd u15 gnd u16 gnd u17 gnd u18 gnd u19 gnd u20 v cc 896-pin fbga pin number agle3000 function u21 v cci b3 u22 io120pdb3v0 u23 io128pdb3v1 u24 io124pdb3v1 u25 io124ndb3v1 u26 io126pdb3v1 u27 io129pdb3v1 u28 io127pdb3v1 u29 io125pdb3v1 u30 io121ndb3v0 v1 io268ndb6v4 v2 io262pdb6v3 v3 io260pdb6v3 v4 io252pdb6v2 v5 io257npb6v2 v6 io261npb6v3 v7 io255pdb6v2 v8 io259pdb6v3 v9 io259ndb6v3 v10 v cci b6 v11 v cc v12 gnd v13 gnd v14 gnd v15 gnd v16 gnd v17 gnd v18 gnd v19 gnd v20 v cc v21 v cci b3 v22 io120ndb3v0 v23 io128ndb3v1 v24 io132pdb3v2 v25 io130ppb3v2 896-pin fbga pin number agle3000 function
iglooe packaging v1.1 3-25 v26 io126ndb3v1 v27 io129ndb3v1 v28 io127ndb3v1 v29 io125ndb3v1 v30 io123pdb3v1 w1 io266ndb6v4 w2 io262ndb6v3 w3 io260ndb6v3 w4 io252ndb6v2 w5 io251ndb6v2 w6 io251pdb6v2 w7 io255ndb6v2 w8 io249ppb6v1 w9 io253pdb6v2 w10 v cci b6 w11 v cc w12 gnd w13 gnd w14 gnd w15 gnd w16 gnd w17 gnd w18 gnd w19 gnd w20 v cc w21 v cci b3 w22 io134pdb3v2 w23 io138pdb3v3 w24 io132ndb3v2 w25 io136npb3v2 w26 io130npb3v2 w27 io141pdb3v3 w28 io135pdb3v2 w29 io131pdb3v2 w30 io123ndb3v1 896-pin fbga pin number agle3000 function y1 io266pdb6v4 y2 io250pdb6v2 y3 io250ndb6v2 y4 io246pdb6v1 y5 io247ndb6v1 y6 io247pdb6v1 y7 io249npb6v1 y8 io245pdb6v1 y9 io253ndb6v2 y10 geb0/io235npb6v0 y11 v cc y12 v cc y13 v cc y14 v cc y15 v cc y16 v cc y17 v cc y18 v cc y19 v cc y20 v cc y21 io142ppb3v3 y22 io134ndb3v2 y23 io138ndb3v3 y24 io140ndb3v3 y25 io140pdb3v3 y26 io136ppb3v2 y27 io141ndb3v3 y28 io135ndb3v2 y29 io131ndb3v2 y30 io133pdb3v2 896-pin fbga pin number agle3000 function
package pin assignments 3-26 v1.1 part number and revision date part number 51700096-003-1 revised june 2008 list of changes the following table lists critical changes that we re made in the current version of the chapter. previous version changes in current version (v1.1) page v1.0 (january 2008) the naming conventions changed for the following pins in the "484-pin fbga" for the a3gle600: pin number new function name j19 io45ppb2v1 k20 io45npb2v1 m2 io114npb6v1 n1 io114ppb6v1 n4 gfc2/io115ppb6v1 p3 io115npb6v1 3-6 advance v0.4 (december 2007) this document was previously in da tasheet advance v0.4. as a result of moving to the handbook fo rmat, actel has restarted the version numbers. the new version number is v1.0. n/a advance v0.3 (september 2007) the "484-pin fbga" table for agle3000 is new. 4-11 the "896-pin fbga" package and table for agle3000 is new. 4-16
iglooe packaging v1.1 3-27 datasheet categories categories in order to provide the latest information to desi gners, some datasheets are published before data has been fully characterized. datasheets are designated as "product brief," "advance," "preliminary," and "production." the definiti on of these categories are as follows: product brief the product brief is a summarized version of a datasheet (advance or production) and contains general product information. this document give s an overview of specific device and family information. advance this version contains initial estimated information based on simulation, ot her products, devices, or speed grades. this information can be used as estimates, but not for production. this label only applies to the dc and switching characteristics chapte r of the datasheet and will only be used when the data has not been fully characterized. preliminary the datasheet contains information based on si mulation and/or initia l characterization. the information is believed to be co rrect, but changes are possible. unmarked (production) this version contains information that is considered to be final. export administration regulations (ear) the products described in this do cument are subject to the expo rt administration regulations (ear). they could require an ap proved export license prior to export from the united states. an export includes release of product or disclosure of technology to a foreign national inside or outside the united states. actel safety critical, life support, and high-reliability applications policy the actel products described in this advance status document may not have completed actel?s qualification process. actel may amend or enhance products during the product introduction and qualification process, resulting in changes in device functional ity or performance. it is the responsibility of each customer to ensure the fitn ess of any actel product (but especially a new product) for a particular purpose, including appr opriateness for safety-cri tical, life-s upport, and other high-reliability applicatio ns. consult actel?s terms and cond itions for specific liability exclusions relating to life-support applications. a reliabilit y report covering all of actel?s products is available on the actel website at http://www.actel.com/documents/ort_report.pdf . actel also offers a variety of enhanced qualification and lot acceptance screening procedures. contact your local actel sales office for addi tional reliability information.
51700096-005-5/ actel corporation 2061 stierlin court mountain view, ca 94043-4655 usa phone 650.318.4200 fax 650.318.4600 actel europe ltd. river court,meadows business park station approach, blackwater camberley surrey gu17 9ab united kingdom phone +44 (0) 1276 609 300 fax +44 (0) 1276 607 540 actel japan exos ebisu buillding 4f 1-24-14 ebisu shibuya-ku tokyo 150 japan phone +81.03.3445.7671 fax +81.03.3445.7668 http://jp.actel.com actel hong kong room 2107, china resources building 26 harbour road wanchai, hong kong phone +852 2185 6460 fax +852 2185 6488 www.actel.com.cn www.actel.com actel and the actel logo are registered trademarks of actel corporation. all other trademarks are the property of their owners. 10.08


▲Up To Search▲   

 
Price & Availability of M1AGLE3000V5-FFGG896PP

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X